
逆向学习newstarweek1和2的题目
逆向题目wp

张程思

一,X0r

1,先用die查看发现无壳,之后ida打开

根据主函数可知该加密方式为纯异或加密,解题脚本如下

decode_flag.py

target = "anu`ym7wKLl$P]v3q%D]lHpi"

keys = [0x07, 0x02, 0x14]

https://imgchr.com/i/pVv4eoQ
https://imgchr.com/i/pVv4eoQ

二,Strange Base
1,还是无壳,查看伪代码

2,发现是base64编码,但是码表被换了,脚本如下(在线网站也可解)

flag = ''.join(chr(ord(ch) ^ keys[i % 3]) for i, ch in enumerate(target))

print(flag)

flag{y0u_Kn0W_b4s1C_xOr}

decode_custom_b64.py

import base64

import sys

import string

https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4Yo4
https://imgchr.com/i/pVv4Yo4

用户输入的密文和被替换后的 base64 字母表

cipher = "T>6uTqOatL39aP!YIqruyv(YBA!8y7ouCa9="

custom_alphabet = "HElLo!A=CrQzy-

B4S3|is'waITt1ng&Y0u^{/(>v<)*}GO~256789pPqWXVKJNMF"

标准 Base64 字母表

std_alphabet =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

if len(custom_alphabet) != 64:

print("Error: custom alphabet length must be 64.")

sys.exit(1)

构建替换表：custom -> standard

trans_table = str.maketrans({custom_alphabet[i]: std_alphabet[i] for i in

range(64)})

把密文中的字符从 custom 映射回 standard

translated = cipher.translate(trans_table)

try:

decoded_bytes = base64.b64decode(translated, validate=False)

except Exception as e:

print("base64 decode error:", e)

sys.exit(1)

尝试把字节解为 utf-8 文本，失败则显示原始 bytes

try:

decoded_text = decoded_bytes.decode('utf-8', errors='ignore')

except:

decoded_text = None

去掉末尾不可打印字符（控制字符），更整洁地显示

def strip_trailing_control(s):

从末尾剔除非打印字符（只保留 printable 和常见换行制表）

while s and s[-1] not in (string.printable):

s = s[:-1]

进一步去掉末尾非字母数字标点（若是控制字符）

while s and (ord(s[-1]) < 32 or ord(s[-1]) == 127):

s = s[:-1]

return s

if decoded_text is not None:

clean = strip_trailing_control(decoded_text)

print("Decoded (utf-8, cleaned):")

print(clean)

三,Pullze
1,无壳,ida分析代码,给的提示很多了这里面

else:

print("Decoded bytes (hex):", decoded_bytes.hex())

print("Decoded bytes (raw):", decoded_bytes)

https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv4T0S
https://imgchr.com/i/pVv4T0S

2,第三处是异或加密,解题脚本如下

从 IDA 中找到的加密数据 (encrypted_array 的前 8 个字节)

encrypted_data = bytes([0xDE, 0xED, 0xDA, 0xF2, 0xDD, 0xD8, 0xD7, 0xD7])

从 Its_about_part3 函数中找到的异或密钥

xor_key = 0xAD

用于存储解密后的字节

decrypted_data = bytearray()

对每个字节执行异或操作

for byte in encrypted_data:

decrypted_byte = byte ^ xor_key

decrypted_data.append(decrypted_byte)

将解密后的字节串转换为字符串 (假设是 ASCII 或 UTF-8 编码)

https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv45Of
https://imgchr.com/i/pVv45Of

3,最终拼出来的flag为

四,EzMyDroid
1,根据题目提示是安卓逆向,用jadx打开,找到关键逻辑的代码如下

2,发现该代码是AES-128 加密+ Base64 编码

使用 .decode() 并处理可能的错误（虽然这里预期不会有）

try:

decrypted_string = decrypted_data.decode('utf-8')

except UnicodeDecodeError:

decrypted_string = "Error decoding bytes"

打印结果

print(f"Encrypted Hex: {encrypted_data.hex()}")

print(f"XOR Key: 0x{xor_key:02x}")

print(f"Decrypted Hex: {decrypted_data.hex()}")

print(f"Decrypted Part 3: {decrypted_string}")

flag{Do_Y0u_Like_7his_Jigs@w_puzz1e_Gam3}

decrypt_aes_ecb.py

import base64

from Crypto.Cipher import AES

得出flag为

五,plzdebugme

cipher_b64 = "cTz2pDhl8fRMfkkJXfqs2t8JBsqLkvQZDLYpWjEtkLE="

key = b"1145141919810000" # 与 Java 代码中相同的 16 字节 key

ct = base64.b64decode(cipher_b64)

cipher = AES.new(key, AES.MODE_ECB)

pt_bytes = cipher.decrypt(ct)

def unpad_pkcs7(data):

if len(data) == 0:

return data

pad = data[-1]

if pad < 1 or pad > AES.block_size:

return data

if data[-pad:] != bytes([pad]) * pad:

return data

return data[:-pad]

unpadded = unpad_pkcs7(pt_bytes)

try:

plaintext = unpadded.decode('utf-8')

except:

plaintext = repr(unpadded)

print("Decrypted plaintext:", plaintext)

flag{@_g00d_st@r7_f0r_ANDROID}

1,查看代码发现需要用gdb动态调试

2,gdb调试得出关键逻辑代码

(gdb) si x0r (cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001",

len=11202057548) at plzdebugme_linux.c:376 376 in plzdebugme_linux.c (gdb)

info registers rip rdi rip 0x555555556687 0x555555556687 <x0r> rdi

0x7fffffffd950 140737488345424 (gdb) finish Run till exit from #0 x0r

(cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001", len=11202057548) at

plzdebugme_linux.c:376 Breakpoint 1, x0r (cipher=0x7fffffffd950

"7=06*\030%b\016\025b3$6\026\016\005``<4p\016=4b\016!=0(,\260\332\377\377\377\

177", len=32)` at plzdebugme_linux.c:377 377 in plzdebugme_linux.c (gdb) info

registers rdi rdi 0x7fffffffd950 140737488345424 (gdb) x/32c $rdi

0x7fffffffd950: 55 '7' 61 '=' 48 '0' 54 '6' 42 '*' 24 '\030' 37 '%' 98 'b'

0x7fffffffd958: 14 '\016' 21 '\025' 98 'b' 51 '3' 36 '$' 54 '6' 22 '\026' 14

'\016' 0x7fffffffd960: 5 '\005' 96 '`' 96 '`' 60 '<' 52 '4' 112 'p' 14 '\016'

61 '=' 0x7fffffffd968: 52 '4' 98 'b' 14 '\016' 33 '!' 61 '=' 48 '0' 40 '(' 44

3,解题脚本如下

4,得出flag

六,尤皮·埃克斯历险记（1）

',' (gdb) printf "%.*s\n", 32, (char*) $rdi `*' not supported for precision or

width in printf` (gdb) x/32c $rbp-0x410 printf "%.*s\n", 32, (char*)($rbp-

0x410) A syntax error in expression, near `printf "%.*s\n", 32, (char*)($rbp-

0x410)'.` (gdb)

python3 - <<'PY'

data =

bytes.fromhex("373d30362a1825620e1562332436160e0560603c34700e3d34620e213d30282

c")

plain = bytes(b ^ 0x51 for b in data)

print(plain.decode())

PY

flag{It3_D3bugG_T11me!_le3_play}

1,die查看有壳,用upx去壳后ida分析

2,打开encrypt里面是异或加密,脚本如下

reconstruct expected bytes used for comparison in main

prefix = b"isfhGJ\tt~cU\ny\nuTjcj\tT~cj" # 24 bytes literal from

qmemcpy

v10_3 = (0x5047B777E756451).to_bytes(8, 'little') # the 8-byte QWORD assigned

to v10[3]

n16753 = (16753).to_bytes(2, 'little') # 0x4171 -> bytes 0x71 0x41

v10_full = prefix + v10_3 + n16753 # total 34 bytes

def recover(v10_bytes, debugger=False):

xor_key = 0xC3 if debugger else 0x3C

out = []

for b in v10_bytes:

enc = b ^ xor_key # this is what encrypt produced (out)

inverse of encrypt:

if out corresponds to digit: out = 105 - C => C = 105 - out

pd = 105 - enc

4,得出flag

七,OhNativeEnc
1,还是安卓逆向,这个提示“安卓的 native 代码在哪呢”是在引导去找 C/C++ 写的代码，而不是
JADX 显示的 Java/Kotlin 代码,并且安卓的 Native 代码通常被编译成 .so (Shared Object) 文
件，JADX 并不擅长直接分析它们,由于apk本质是压缩包,于是用bandzip打开它,找到其中的so文
件并提取出来;

if 48 <= pd <= 57:

out.append(chr(pd)); continue

if out corresponds to letter: out = (char)(-69 - C) => C = (-69 -

out) mod 256

pl = (-69 - enc) & 0xFF

if (65 <= pl <= 90) or (97 <= pl <= 122):

out.append(chr(pl)); continue

otherwise symbol unchanged

out.append(chr(enc))

return ''.join(out)

print("v10 bytes hex:", v10_full.hex())

print("Recovered (non-debug) flag:", recover(v10_full, debugger=False))

print("Recovered (debug) flag :", recover(v10_full, debugger=True))

flag{E4sy_R3v3rSe_e4Sy_eNcrypt10n}

2,这是提取出文件的伪代码和其中的密文与密钥

3,脚本如下

可复现脚本：把 mm_bytes、key_bytes 按你环境运行

import struct

def u32(x): return x & 0xFFFFFFFF

def F(y, z, k, n):

return u32(((((4*y) ^ (z >> 5)) + ((y >> 3) ^ ((16 * z) & 0xFFFFFFFF))) &

0xFFFFFFFF) ^ ((k ^ z) + (y ^ n)))

def decrypt(mm_bytes, key_bytes, rounds=12):

key = list(struct.unpack("<4I", key_bytes))

v = list(struct.unpack("<8I", mm_bytes))

delta = 114514

for k in range(rounds, 0, -1):

n = u32(delta * k)

v14 = (n >> 2) & 3

k0 = key[v14]; k1 = key[v14 ^ 1]; k2 = key[v14 ^ 2]; k3 = key[v14 ^ 3]

逆序做减法（与伪代码加法相反）

v20 = F(v[0], v[6], k3, n); v[7] = u32(v[7] - v20)

t = F(v[7], v[5], k2, n); v[6] = u32(v[6] - t)

t = F(v[6], v[4], k1, n); v[5] = u32(v[5] - t)

t = F(v[5], v[3], k0, n); v[4] = u32(v[4] - t)

t = F(v[4], v[2], k3, n); v[3] = u32(v[3] - t)

t = F(v[3], v[1], k2, n); v[2] = u32(v[2] - t)

t = F(v[2], v[0], k1, n); v[1] = u32(v[1] - t)

t = F(v[1], v[7], k0, n); v[0] = u32(v[0] - t)

return struct.pack("<8I", *v)

if __name__ == "__main__":

从 IDA 拷出的 mm（32 bytes），按你贴出的顺序

mm_bytes = bytes([

0xB6,0x53,0x6E,0x4D,0x77,0x5D,0x08,0xD2,

0xFB,0x2C,0x63,0x1E,0xBB,0x7B,0x01,0x9B,

0xF5,0x04,0x6A,0xF4,0x0E,0x84,0x27,0x47,

0x64,0xA1,0xE4,0xD9,0xEF,0x12,0x44,0x37

])

key = "ThisIsAXXteaKey",0

key_bytes = b"ThisIsAXXteaKey\x00"

plain = decrypt(mm_bytes, key_bytes, rounds=12)

4,得出flag

八,Look at me carefully
1,ida先查看源代码

print("raw bytes:", plain)

try:

print("as utf-8:", plain.rstrip(b"\x00").decode('utf-8'))

except:

print("as latin-1:", plain.decode('latin-1'))

flag{Ur_G00d_@_n@tive_Func}

2,这个题是字符串重排的逻辑,需要动态调试,但是我调不出来,这个是ai的初始脚本

3,得出了不正确的flag

1. 这是程序内部存储的、重排后的正确字符串

target = "cH4_1elo{ookte?0dv_}alafle___5yygume"

2. 这是 sub_FB16E0 调用中使用的索引顺序

indices = [

27, 5, 6, 9, 28, 18, 32, 29, 4, 11, 15, 17, 22, 8, 34, 16, 19, 7, 26, 35,

2, 14, 21, 0, 1, 25, 13, 23, 20, 37, 30, 33, 10, 3, 12, 36, 24, 31

]

3. 创建一个 38 个字符长的空列表来存放 flag

(target 和 indices 列表的长度都是 38)

flag = ['?'] * len(target)

4. 执行反向操作：

我们知道 target[0] ('c') 来自 flag[27]

我们知道 target[1] ('H') 来自 flag[5]

...

for i in range(len(target)):

flag_index = indices[i] # 应该存放的位置

target_char = target[i] # 应该存放的字符

flag[flag_index] = target_char

5. 打印结果

print("".join(flag))

4,但是可以看出这是字符串移位,我将它手动拼成了可读的状态,得出了正确flag

九,Forgotten_Code
1,这个题是文本文件/汇编语言代码,可以直接在txt中分析,也可以gcc转化为exe放在ida中分析,
在txt中发现了main,进行查看

2,发现是用二进制用 TEA 算法对每个 8 字节块加密，密钥在每次调用 fn 时在 ng 上来回 XOR

flau{H4ve_gom_lo0ked_at_?e_c1oy?ly?}e5

flag{H4ve_you_lo0ked_at_me_c1o5ely?}

0x11 ,脚本如下
#!/usr/bin/env python3

decrypt_tea.py
Reproduce TEA decryption and key toggling from
the disassembly, then print recovered flag.
from struct import pack, unpack

def u32(x):
return x & 0xFFFFFFFF

def bytes_to_u32_list(b):
little-endian -> list of uint32
return [unpack('<I', b[i:i+4])[0] for i in range(0, len(b), 4)]

def teadecrypt(v0, v1, k):
"""Standard TEA decrypt: v0,v1 are uint32, k is list of 4 uint32"""
delta = 0x9E3779B9
mask = 0xFFFFFFFF
sum = (delta * 32) & mask
v0 = u32(v0); v1 = u32(v1)
k0,k1,k2,k3 = [u32(x) for x in k]
for in range(32):
v1 = u32(v1 - ((((v0 << 4) + k2) ^ (v0 + sum) ^ ((v0 >> 5) + k3))))
v0 = u32(v0 - ((((v1 << 4) + k0) ^ (v1 + sum) ^ ((v1 >> 5) + k1))))
sum = u32(sum_ - delta)
return v0, v1

def main():
ezgm dwords extracted from the binary (as signed in disasm); convert to u32
ezgm = [
1210405119, 710975774,
-90350153, -1958008304,
-745722482, 67707510,
-86515270, -1728462407
]
ezgm_u = [u32(x) for x in ezgm]

original ng bytes from disassembly: "sp\177vuctp|xeb|hv~"

ng_orig = b"sp\x7fvuctp|xeb|hv~" # 16 bytes

if name == "main":
main()
3,得出flag

十,采一朵花，送给艾达（1）

key0 = ng_orig interpreted as 4 little-endian uint32

key0 = bytes_to_u32_list(ng_orig)

key1 = ng_orig XOR 0x11 on each byte, then interpreted

ng_xored = bytes(byte ^ 0x11 for byte in ng_orig)

key1 = bytes_to_u32_list(ng_xored)

There are 4 blocks of 8 bytes (32 bytes payload). For block i:

encryption used key1 for even i (i=0 -> key1), key0 for odd i (matching

disasm).

plaintext_blocks = []

for i in range(4):

key = key1 if (i % 2 == 0) else key0

c0 = ezgm_u[2*i]

c1 = ezgm_u[2*i + 1]

p0, p1 = tea_decrypt(c0, c1, key)

plaintext_blocks.append(pack('<II', p0, p1))

payload = b''.join(plaintext_blocks)[:32]

flag = b"flag{" + payload + b"}"

print("Recovered payload (hex):", payload.hex())

print payload safely (latin1 to avoid decode errors)

print("Recovered payload (latin1):", payload.decode('latin1'))

print("\nRecovered flag:")

print(flag.decode('latin1'))

flag{4553m81y_5_s0o0o0_345y_jD5yQ5mD9}

1,这个题无法用伪代码分析了,只能在asm层面查看,观察出是rc4加密

2,但是rc4加密的算法被作者魔改了

3,以"EasyJunkCodes"为key，解密数
据"C77FC1430364751188B88C55F6C023DF4D0F2E9EF682F0F2BC516B08298327E1CBBD
C688B1804F4E",解题脚本如下

def rc4_init(key: bytes) -> list:

"""

初始化魔改RC4的S-box。

"""

key_len = len(key)

1. S-box的魔改初始化

s_box = [(256 - i) % 256 for i in range(256)]

2. 标准的KSA置换过程

j = 0

for i in range(256):

j = (j + s_box[i] + key[i % key_len]) % 256

s_box[i], s_box[j] = s_box[j], s_box[i]

return s_box

def rc4_decrypt(s_box_init: list, ciphertext: bytes) -> bytes:

"""

使用初始化后的S-box解密数据。

"""

复制S-box，因为解密过程会修改它的状态

s_box = list(s_box_init)

i = 0

j = 0

plaintext = bytearray()

for char_code in ciphertext:

PRGA: 生成密钥流

i = (i + 1) % 256

j = (j + s_box[i]) % 256

s_box[i], s_box[j] = s_box[j], s_box[i]

计算密钥流字节 K

keystream_byte = s_box[(s_box[i] + s_box[j]) % 256]

解密操作: P = (C - K) % 256

加上256再取模是为了确保结果为正

decrypted_byte = (char_code - keystream_byte + 256) % 256

plaintext.append(decrypted_byte)

return bytes(plaintext)

--- 主程序 ---

if __name__ == "__main__":

输入的Key和密文

key = b"EasyJunkCodes"

ciphertext_hex =

"C77FC1430364751188B88C55F6C023DF4D0F2E9EF682F0F2BC516B08298327E1CBBDC688B1804

F4E"

将十六进制字符串转换为字节

ciphertext = bytes.fromhex(ciphertext_hex)

print(f"Key: {key.decode()}")

print(f"Ciphertext (hex): {ciphertext_hex}")

print("-" * 30)

1. 初始化S-box

s_box_initialized = rc4_init(key)

2. 解密数据

plaintext = rc4_decrypt(s_box_initialized, ciphertext)

3. 输出结果

try:

print(f"Decrypted Flag: {plaintext.decode('utf-8')}")

except UnicodeDecodeError:

print(f"Decrypted Data (bytes): {plaintext}")

4,得出flag

flag{Junk_C0d3s_4Re_345y_t0_rEc0gn1Ze!!}

