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_main();

puts(“"Please input your flag: ");
scanf("%25s", Str);

n24 = strlen(str);

if ( n24 == 24 )

{
for ( n24 1 = ©; n24 1 < n24; ++n24 1)
{
if (( n24 1% 3)
{
if (n24 1 %3 ==1)
Str[n24_1] "= exllu;
else
Str[n24 1] "= ©x45u;
}
else
{
Str[n24 1] ~= exl4u;
¥
¥
UE[B] = 19;
UE[I] = 19;
VE[Z] = 81;
for ( n24 2 = @ n24 2 < n24; ++n24 2 )
Str[n24_2] "= v5[n24_2 % 3];
strcpy(Str2, "anu ym7wKL1$P]v3g%D]1Hpi"™);
if ( !strcmp(Str, Str2) )
puts("Right flag!");
else
puts("Wrong flag!");
return @;
¥
else
{

puts("Wrong flag length!");
IRYEE RER A A2 NN A N A R SNE, R a0 T

# decode_flag.py
target = "anu'ym7wKL1$P]v3q%D]lHpi"
keys = [0x07, 0x02, 0x1d]


https://imgchr.com/i/pVv4eoQ
https://imgchr.com/i/pVv4eoQ

flag = ''.join(chr(ord(ch) * keys[i % 3]) for i, ch in enumerate(target))
print(flag)

flag{yOu_Know_buUs1C_xOr}
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1| _inte4 _ fastcall main()
2 {

w

int binlength; // eax

size_t Size; // rax

char enc[48]; // [rsp+28h] [rbp-98h] BYREF

unsigned __int8 output[48]; // [rsp+56h] [rbp-66h] BYREF
unsigned _ int8 input[48]; // [rsp+86h] [rbp-36h] BYREF

_main();
memset(input, @, sizeof(input));
memset(output, @, sizeof(output));
puts("It's time to show your flag to me~~~");
strcpy(enc, "T>6uTqOatL39aP!YIqruyv(YBA!8y7o0uCa9=");
scanf_s("%s", input);
binlength = strlen((const char *)input);
base64_encode(input, (char *)output, binlength);
Size = strlen(enc);
if ( !memcmp(output, enc, Size) )

printf("Oh! You're awesome!!!™);
else

puts(“"Wrong!™);
return ©;

}
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Address Length Type String

. rdata:0--+ 00000041 C HE1Lo!A=CrQzy—B4S3|is’ walTtlng&Y0u [/ (>v<)*} G0 256789pPaWXVK JNMF
'# .rdata:0--- 00000025 C It's time to show your flag to me
'# .rdata:0'-- 00000016 C Oh! You're awesome!!!

& Tl 2baseb4 4D, (B 2B EWIR T WA T (EL M haTAR)

N

# decode_custom_bé64. py
import baseé6d

import sys

import string


https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4Yo4
https://imgchr.com/i/pVv4Yo4

# MR SO 5 1K) baseed LR

cipher = "T>6uTqOatL39aP!YIqruyv(YBA!8y7ouCa9="
custom_alphabet = "HElLo!A=CrQzy-
BUS3|is'waITtlng&YOu"{/(>v<)*}G0~256789pPqWXVKINMF"

# brift Base6l TRER
std_alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

if len(custom_alphabet) != 64:
print("Error: custom alphabet length must be 64.")
sys.exit(1)

# EFHE: custom —> standard
trans_table = str.maketrans({custom_alphabet[i]: std_alphabet[i] for i in
range(64)})

# SRR custom BLSS[E] standard
translated = cipher.translate(trans_table)

try:

decoded_bytes = base6u.b6Udecode(translated, validate=False)
except Exception as e:

print("base6ld decode error:", e)

sys.exit(1)

# R E TN utf-8 A, KRMUNE/RELM bytes

try:
decoded_text

except:
decoded_text

decoded_bytes.decode('utf-8', errors='ignore')

None

# ERREATATEHZR (BHl7R) , HREM BN
def strip_trailing_control(s):
# NOREZIGAFTEN A7 (URE printable A WHATHIF)
while s and s[-1] not in (string.printable):
s = s[:-1]
# B REREIRF BT IR R CGERIEH 7R
while s and (ord(s[-1]) < 32 or ord(s[-1]) == 127):
s = s[:-1]
return s

if decoded_text is not None:
clean = strip_trailing_control(decoded_text)
print("Decoded (utf-8, cleaned):")
print(clean)



else:
print("Decoded bytes (hex):", decoded_bytes.hex())
print("Decoded bytes (raw):", decoded_bytes)

=,Pullze

1. X7 idas iU amvie nRETXE®Em
1 int Puzzle Challenge()

2 {

3 char Destination[4]; // [rsp+26h] [rbp-1Ah] BYREF

4 char *Y@u; // [rsp+36h] [rbp-16h]

5 char *Source; // [rsp+38h] [rbp-8h]

6

7 Source = "Do_ ";

8 Yeu = “"Yeu_";

9 strcpy(Destination, "Do_");

@ strcat(Destination, Yeu);

1 return puts("Welcome to the Jigsaw Puzzle Game!");

2 }

IDA V--- B =l Pseudoc -+ B [E] Pseudoc - [ [E Pseudoc*+ [ [E] Pseudoc - [ [E] Pseudoc - [ [E Ps
1 fint Like_7his_Jig()
2 {

® 3 puts("Congratulations! You found the second part of the flag--The function name.");
® 4 return printf("Observing function names is an important step in reverse engineering.");
®5

}


https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv4T0S
https://imgchr.com/i/pVv4T0S

IDA V.= [ Pseudoc* B Pseudoc - [l Pseudoc -+ [l Pseudoc:*+ |

1 __int64 Its_about_part3()

2 {

3 __inté4 n8_3; // rax

4 _BYTE vi[1e]; // [rsp+2Ah] [rbp-16h]
5 int n8_1; // [rsp+34h] [rbp-Ch]

6 int n8; // [rsp+38h] [rbp-8h]

7 int n8_2; // [rsp+3Ch] [rbp-4h]

8

® 9 printf("You can use shift+e to extract the data.");
e 18 n8 = 8B;

@11 n8 1 = 8;

©12 for ( n8 2 =0; n8.2 < n8_1; ++n8_2 )

e 13 vl[n8 2] = encrypted_array[ng 2] ™ ©xAD;

® 14 n8_3 = nd_1;

e 15 vl1[n8_1l] = 6;

® 16 return nd_3;

e 17 }

4000 ;org 1408884806nh

4000 public flag part 4

4000 flag part_4 db 'le_Gam3',@

4008 ; const char Buffer[]

4008 Buffer db 'Congratulations! You found

2, F=REFENNE, FEEMHANT

# M IDA F#kFIMINZ %y (encrypted_array HIFT 8 ANFTH)
encrypted_data = bytes([OxDE, OxED, OxDA, 0xF2, OxDD, 0xD8, OxD7, 0xD7])

# M Its_about_part3 %3k 37 e
xor_key = OxAD

# M T AR Ja
decrypted_data = bytearray()

# ORI IAT R R

for byte in encrypted_data:
decrypted_byte = byte " xor_key
decrypted_data.append(decrypted_byte)

# B e T RO A (& ASCII B¢ UTF-8 #whd)


https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv45Of
https://imgchr.com/i/pVv45Of

# A .decode() JfAbFEA]REMIEE 1R
try:

(BRI BHIAA A

decrypted_string = decrypted_data.decode('utf-8')

except UnicodeDecodeError:

decrypted_string = "Error decoding bytes"

# FTENZS

print(f"Encrypted Hex: {encrypted_data.hex()}")
print(f"XOR Key: Ox{xor_key:02x}")

print(f"Decrypted Hex: {decrypted_data.hex()}")
print(f"Decrypted Part 3: {decrypted_string}")

3, AP HiRHflagh

flag{Do_YOu_Like_7his_Jigs@w_puzzle_Gam3}

4,EzMyDroid

1 {RIER B iR T E R 21 M, BjadxiTF B XS EAIRREI T

@ i OB Sw I8 B¢ #5H *app-release - jadx-gui = (m] X
= # S 2 O 06 Q AOM > FO& B F
app-release.apk < &R € MainActivity ¢, FirstFragment €, AESECBUtils ¢, SecondFragment ~
F?ﬁw}\r /* loaded From: classes2.dex */
A 15 public class [FirstFragment extends Fragment {
_COROUTINE private FragmentFirstBinding binding;
android.support.vi i .
droid @override // androidx.fragment.app.Fragment
androlicx 26 public View onCreatevView(LayoutInflater layoutInflater, ViewGroup viewGroup, Bundle bundl
com.google 27 FragmentFirstBinding fragmentFirstBindingInflate = FragmentFirstBinding.inflate(layou
kotlin this .binding = fragmentFirstBindingInflate;
kotlinx.coroutines 28 ) return fragmentFirstBindingInflate.getRoot();
org
work.pangbai.ezmydroid @override // androidx.fragment.app.Fragment
databinding 32 public veid onviewCreated(vView view, Bundle bundle) {

& AESECBUtils 33 super.onViewCreated(view, bundle);
C.F' tF t 35 this.binding.checkFlag.setOnClickListener(new View.OnClickListener() { // from class:
~ II_‘S rég'!'en @override // android.view.View.OnClickListener
€ MainActivity 37 public void onClick(view view2) {
%R try {
¢, SecondFragment u2 String strEncrypt = AESECBUtils.encrypt(FirstFragment.this.binding.input.

YRR 43 Log.i("result", strEncrypt);

BTIR 4y if (strEncrypt.equals("cTz2pDh18fRMfkkIXfqs2t8IBsqLkvQZDLYpWFELKLE=")) {
assets us Toast.makeText(FirstFragment.this.getContext(), "Right !!!", 0).shou(
kotlin } else {

META-INF 47 Toast.makeText(FirstFragment.this.getContext(), "Wrong !!!", 0).show(
}
res 3 X } catch (Exception unused) {

w AndroidManifest.xml

5 classes.dex }

;- classes2.dex } 1
DebugProbesKt.bin
not-supported-adapter.list @override // androidx.fragment.app.Fragment

Jl resources.arsc 59 public void onDestroyvView() {

APK signature 60 super.onDestroyView();

this .binding = null;
[=] Summary )
}
iaE: ] ezl Smali Simple Fallback Split view

2, 5 MIZ D 2AES-128 i1ZZ+ Baseb4 4wi5

# decrypt_aes_ecb.py
import base6d
from Crypto.Cipher import AES



cipher_b6d = "cTz2pDh18fRMfkkJIXfqs2t8IBsqLKkvQZDLYpWjEtKLE="
key = b"1145141919810000" # 5 Java fRIGHAHFEN 16 F15 key

ct = baseé6u.b6uUdecode(cipher_bé6u)
cipher = AES.new(key, AES.MODE_ECB)
pt_bytes = cipher.decrypt(ct)

def unpad_pkcs7(data):

if len(data) == 0:
return data

pad = data[-1]

if pad < 1 or pad > AES.block_size:
return data

if data[-pad:] !'= bytes([pad]) * pad:
return data

return datal:-pad]

unpadded = unpad_pkcs7(pt_bytes)
try:

plaintext = unpadded.decode('utf-8')
except:

plaintext = repr(unpadded)

print("Decrypted plaintext:", plaintext)

B iflagh

flag{@_g00d_st@r7_for_ANDROID}

4,plzdebugme
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nt _ fastcall main(int argc, const char **argv, const char **envp)

int keylen; // eax

char c; // [rsp+Fh] [rbp-5E1lh]

uint32_t v[2]; // [rsp+28h] [rbp-5C8h] BYREF
uint32_t k[4]; // [rsp+3eh] [rbp-5Ce8h] BYREF
RC4_CTX rcd; // [rsp+4eh] [rbp-5Beh] BYREF

uint8_t rcd_key[4]; // [rsp+156h] [rbp-4ABh] BYREF
uint8_t chacha_nonce[12]; // [rsp+154h] [rbp-49Ch]
uint8_t aes_key[16]; // [rsp+l6eh] [rbp-498h] BYREF
uint8_t aes_iv[16]; // [rsp+17@h] [rbp-48@h] BYREF
uint8_t chacha_key[32]; // [rsp+188h] [rbp-476h]
uint8_t rc4_out[32]; // [rsp+lABh] [rbp-458h] BYREF
uint8_t aes_out[32]; // [rsp+lC8h] [rbp-438h] BYREF
unsigned __ int8 out[1e32]; // [rsp+lEeh] [rbp-41eh] BYREF
unsigned _ int64 v17; // [rsp+5E8h] [rbp-8h]

v1l7 = __readfsqword(@x28u);

printf(" Debug is important!!!.\n");

printf("You can get the flag directly by debugging\n");

printf("The debugging process is similar to that of Windows\n");

printf("HINT: You can find the flag character style in the function xer(), break on it\n");
hexchar2int(c);

*(_QWORD *)chacha_key = @xA9ABATAG6ASA4A3A2LL;

*(_QWORD *)&chacha key[8] = @xC2C1B6B5B9B5B3BLLL;

*(_QWORD *)&chacha_key[16] = @;
*(_QWORD *)&chacha_key[24] = ©;

*(_QWORD *)chacha_nonce = @x69D4D4DDDD4D2D5LL ;
*(_DWORD *)&chacha_nonce[8] = ©;

strcpy((char *)rca_key, "Wow");

keylen = strlen((const char *)rc4_key);
rc4_init(&rc4, rc4_key, keylen);
rcd_crypt(&-c4, ciphertext, rc4_out, 32);
*(_QWORD *)aes key = @xA6D2AE2816157E2BLL;
*(_QWORD *)&aes key[8] = 0x1141467597F7ABLL;
*(_QWORD *)aes_iv = ©x4511144511144511LL;
*(_QWORD *)&zes iv[8] = ©x1114451114451114LL;

aes_de(aes_out, rc4_out, 32, aes_key, ses_iv);
memcpy (out, z2es _out, ex2eu);

v[@] = 1751720303;

v[1] = 1633904993;

k[el] = 1;

k[1] = 2;

k[2] = 3;

00002774 main:=1 (2774)

2,9dbiFiA 1T R FE R

(gdb) si x0r (cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001",
1en=11202057548) at plzdebugme_linux.c:376 376 in plzdebugme_linux.c (gdb)
info registers rip rdi rip 0x555555556687 0x555555556687 <x0r> rdi
OxT7fffffffdo50 140737u883u5u24 (gdb) finish Run till exit from #0 xOr
(cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001", 1en=11202057548) at
plzdebugme_linux.c:376 Breakpoint 1, xOr ( cipher=0x7fffffffd950
"7=06%\030%b\016\025b3$6\026\016\005" *<Up\016=Ub\016!=0(,\260\332\377\377\377\
177", len=32)' at plzdebugme_linux.c:377 377 in plzdebugme_linux.c (gdb) info
registers rdi rdi Ox7fffffffd950 140737u4883u5u24 (gdb) x/32c $rdi
OXT7fffffffd956: 55 '7' 61 '=' 48 'G' 54 '6' 42 'x' 24 '\030' 37 '%' 98 'b'
OXTFFFFFf£d958: 14 '\016' 21 '\025' 98 'b' 51 '3' 36 '$' 54 '6' 22 '\026' 1uU
'"\016' OxT7fffffffdo960: 5 '\0O5' 96 ''' 96 ''' 60 '<' 52 '4' 112 'p' 14 '\0l6’
61 '=' OxTfffffffdo68: 52 '4' 98 'b' 14 '\016' 33 '!' 61 '=' 48 'O' 4O '(' u4



'," (gdb) printf "%.xs\n", 32, (charx) $rdi ‘*' not supported for precision or
width in printf' (gdb) x/32c $rbp-0xu410 printf "%.*s\n", 32, (char*)($rbp-
0x410) A syntax error in expression, near ‘printf "%.*s\n", 32, (charx)($rbp-
oxu410)'." (gdb)

3 R AN T

python3 - <<'PY'

data =
bytes.fromhex("373d30362a1825620e1562332436160e0560603c34700e3d3U4620e213d30282
c")

plain = bytes(b " 0x51 for b in data)

print(plain.decode())

PY

4,15 tiflag

flag{It3_D3bugG_T1llme!_le3_play}

7N LR -Rhmkaie (1)
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le
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3e
31
32
33
34
35
36
37
38
39
te
11
42
43
14
45
16
47
48
49
5@
51
52
53

uTA viow

_QWORD v10[4]; // [rsp+6@h] [rbp-4@h] BYREF
__intl6 n16753; // [rsp+8eh] [rbp-26h]

char v12; // [rsp+86h] [rbp-1Ah]

char v13; // [rsp+87h] [rbp-19h]

__int64 n34; // [rsp+88h] [rbp-18h]
unsigned _ int64 i; // [rsp+96h] [rbp-18h]
char v16; // [rsp+9Fh] [rbp-1h]

_main(*(__inte4 *)&argc, (__inte4)argv, (__inté4)envp);
gmemcpy (v18, "isfhGI\tt~cU\ny\nuTjcj\tT~cj", 24);
v18[3] = ex5e47B777E756451LL;

nle753 = 16753;

n34 = 34;

std::string::basic_string(vo);

std: :operator<<<std::char_traits<char>>(refptr__ZSt4cout, "Enter your flag: ");
std::operator>><char>(refptr__ZSt3cin, v9);
encrypt((__inte4)v8, (__inte4)va);

n34 1 = std::string::length(vg);

if ( n34 == n34_1 )

v5 = std::string::length(vg);
if (1 >=v5)

break;
if ( IsDebuggerPresent() )

v12 = *(_BYTE *)std::string::operator[](v8, 1) ~ @xC3;
if ( viz = *((_BYTE *)vie + i) )
{
v1ie = @;
break;
1
}
else
{
vl3 = *(_BYTE *)std::string::operator[](v8, 1) ~ @x3C;
if ( vi3 1= *((_BYTE *)vie + i) )
{
vlie = @;
break;
}
1

OOOO_OBB9 main:10 (1400015B9)




IDA View-A x| Pseudocode-A 8 [#] Strings

Hex V:

int64 _ fastcall encrypt(__int64 al, __inté4 a2)

rHl

1
2
3  unsigned __int64 v2; // rax

4 char v4; // [rsp+27h] [rbp-19h] BYREF

5 char *v5; // [rsp+28h] [rbp-18h]

6 char C; // [rsp+37h] [rbp-9h]

7 unsigned __int64 i; // [rsp+38h] [rbp-8h]
8

e 9 v5 = &v4;
® 18 std::string::basic_string<std::allocator<char>>(al, &unk_l4eecC7eee, &v4);
® 11 std::__new_allocator<char>::~__new_allocator(&v4);
12 for (1=0; ; ++i )
13 {
e 14 v2 = std::string::length(a2);
® 15 if (1 >=v2)
® 16 break;
® 17 C = *(_BYTE *)std::string::operator[](a2, 1i);
® 13 if ( (unsigned int)(C - 48) > 9 )
19 {
® 20 if ( islower(C) || isupper(C) )
e 21 std::string::operator+=(al, (unsigned int)(char)(-69 - C));

22 else

® 23 std::string::operator+=(al, (unsigned int)C);
24 }
25 else
26 {
® 27 std::string::operator+=(2l, (unsigned int)(char)(le5 - C));
28 }
29}
® 30 return z1;
® 31}
raatavuuuuoul4vol ruae 30rg Ll4vgl/ovan
v.rdata:00e00001400C7000 unk_l1400C7000 db 2] ; DATA XREF: encrypt(std::string const&)+21to

mdedk e . AAAANAANY AAAFATAARTY . ek ALIARR Fed o - £ o

2 {TFFencrypt EEE S SN M T

# reconstruct expected bytes used for comparison in main

prefix = b"isfhGJ\tt~cU\ny\nuTjcj\tT~cj" # 24 bytes literal from
gqmemcpy

v10_3 = (0x5047B777E756U51).to_bytes(8, 'little') # the 8-byte QWORD assigned
to v10[3]

nl6753 = (16753).to_bytes(2, 'little') # Ox4l71 —> bytes 0x71 0xul

v10_full = prefix + v10_3 + nl6753 # total 34 bytes

def recover(vlO_bytes, debugger=False):
xor_key = 0xC3 if debugger else 0x3C
out = []
for b in v10_bytes:

enc = b * xor_key # this is what encrypt produced (out)

# inverse of encrypt:

# if out corresponds to digit: out = 105 - C => C = 105 - out

pd = 105 - enc



if 48 <= pd <= 57:
out.append(chr(pd)); continue
# if out corresponds to letter: out = (char)(-69 - C) => C = (-69 -
out) mod 256
pl = (=69 - enc) & OxFF
if (65 <= pl <= 90) or (97 <= pl <= 122):
out.append(chr(pl)); continue
# otherwise symbol unchanged
out.append(chr(enc))
return ''.join(Cout)

print("v10 bytes hex:", v10_full.hex())

print("Recovered (non-debug) flag:", recover(vlO_full, debugger=False))
print("Recovered (debug) flag :", recover(v10_full, debugger=True))

4,13 tiflag

flag{Edsy_R3v3rSe_elUSy_eNcryptlOn}

+5,0hNativeEnc

1, PR REWH,XMERTEN native RIBTEHIE"R1ES IS EIX C/C++ BN, MAE
JADX 27K Java/Kotlin X3, H B L =R Native KIB@EERRIFA .so (Shared Object) X
, JADX HREKEENNEN], B TapktREESHEE, T EMbandzipt T E, KB HFHIsoX
HFHIRENH K,



© app-release.apk - Bandizip (Professional)
Z#HE) REE B0 SmO) wENV IBRO #EH)

X {4 EBandiZipf TR ZIPX{415?

') app-release.apk 2R - ERE AN BaAN 2R

> assets |
> = kotlin [ libohnativeenc.so 6,136 6,136 SO T
v __lib
. armb4-v8a
___ armeabi-v/a
__ xB86
__x86 64
> META-INF
> res

3Tf: 938, XA 0, R4EAA/N 894 MB

2, XE R X AR AR E X 5 %A



] IDA View-A (] = Pseudocode—B %] = Pseudocode—A (x] = Strings [x] @l Hex View-1 ] ] Local Types <]
d g;| __int64 v28; // [xsp+28h] [xbp-8h]
® 29  v28 = *(_QWORD *)(_ReadStatusReg(TPIDR_EL@) + 48);
® 30 src = (const char *)(*(__int64 (_ fastcall **)(_ int64, _ int64, _QWORD))(*(_QWORD *)al + 1352LL))(al, a3, 0);
® 31 _ android_log_print(4, "native", "input:%s", src);
® 32 dest_ = Qu;
® 33 v27 = Qu;
| ® 34  strnepy((char *)&dest_, src, ex2eu);
1e35 va=v27;
® 36 v5 = DWORD1(v27);
® 37 7 = DWORD2(v27);
© 338 v6 = HIDWORD(v27);
® 39 dest 1 = dest_;
® 48 v9 = DWORD1(dest_);
® 41 v1l = DWORD2(dest_);
g ® 42 v1@ = HIDWORD(dest );
Teas viz = -12;
1 ® 44 nl14514 = 114514;
n 45 do
L 46 {
® 47 vi4 = (n114514 >> 2) & 3;
® 48 v15 = *(_DWORD *)&aThisisaxxteake[4 * v14];
® 49 v16 = *(_DWORD *)&aThisisaxxteake[4 * (vi4 ~ 1)];
® 50 v17 = _ CFADD_ (viZ++, 1);
e 51 dest_ 1 4= (((4 * v38) ~ (v6 >> 5)) + ((v3 >> 3) ~ (16 * v6))) ~ ((vi5 ~ v6) + (v8 ~ ni14514));
® 52 v18 = *(_DWORD *)&aThisisaxxteake[4 * (vi4 ~ 2)];
® 53 v 4= (((4 * vil) ~ (dest_ 1 >> 5)) + ((vil »> 3) ~ (16 * dest_ 1))) ~ ((v16 ~ dest_ 1) + (vil ~ n114514));
e 54 v19 = *(_DWORD *)&aThisisaxxteake[4 * (v14 * 3)];
® 55 Vi1 = (((4 * v18) ~ (v9 5> 5)) + ((v18 >> 3) ~ (16 * v8))) ~ ((vi8 ~ v9) + (vie ~ nl14514));
® 56 V18 4= (((4 * va) ~ (vil >> 5)) + ((v& > 3) ~ (16 * vi1))) ~ ((v19 ~ vil) + (v4 ~ n114514));
®57 va += (((4 * v5) A (v18 >> 5)) + ((v5 >> 3) A (16 * vie))) ~ ((vi5 ~ vie) + (v5 ~ n114514));
® 58 v5s 4= (((4 * v7) ™ (vd >> 5)) + ((v7 >> 3) ~ (16 * v4))) ~ ((vie ~ v4) + (v7 ~ nlld514));
® 59 V7 4= (((&4 * vB) ~ (v5 »> 5)) + ((v6 >> 3) ~ (16 * v5))) ~ ((vi8 ~ v5) + (v6 ~ nl14514));
® 60 v20 = (((4 * dest__ 1) ~ (v7 >> 5)) + ((dest__ 1 >> 3) ~ (16 * v7))) ~ ((v1i9 ~ v7) + (dest__ 1 ~ nll14514));
® 61 nl14514 += 114514;
® 62 V6 += v208;
63 }
® 64 while ( !v17 );
® 65 *(_QWORD *)&dest_ = _ PAIR64_ (v9, dest_ 1);
® 66 *((_QWORD *)&dest + 1) = _ PAIR64_ (v1@, vil);
® 67 *(_QWORD *)8&v27 = _ PAIR64__(v5, v4);
© 63 *((_OWORD *)&v27 + 1) = _ PAIR64__(V6, v7);
® 69 if ( (unsigned __int8)mm[@] != (unsigned _ int8)dest_ 1 )
| ®7e return @;
000009A0 Java_work pangbai_ohnativeenc_FirstFragment_checkFlag:27 (9A0)
.data:eeee000000082ECE EXPORT mm
.data:0000000000002EC8 ; char mm[32]
" ~.data:2000000000002EC8 mm DCB exBé6 ; DATA XREF: LOAD:©©02e000000000F8T0
.data:00000000000B2ECS ; LOAD:oeeeeoceeee003D8TO0 ..
° .data:0000000000082ECO DCB ex53 ; S
° .data:0000000000082ECA DCB @x6E ; n
‘ .data:0000000000002ECB DCB ex4D ; M
° .data:0000000000002ECC DCB ex77 ; w
° .data:0000000000002ECD DCB @ex5D ; ]
* .data:00000000000082ECE DCB 8
° .data:0000000000082ECF DCB exD2
* .data:0000000000002EDO DCB exFB
* .data:oeeoee0eeeee2ED1 DCB ex2C ; ,
° .data:0©00000000002ED2 DCB ex63 ; ¢
* .data:00000000000082ED3 DCB ex1E
° .data:oeeeee0ee00e02ED4 DCB ©exBB
* .data:0000000000002EDS DCB @ex7B ; {
* .data:00000000000082ED6 DCB 1
° .data:©©00000000082ED7 DCB ex9B
* .data:0000000000002ED8 DCB exF5
* .data:oee0e00000082ED9 DCB 4
° .data:0000000000002EDA DCB @x6A ; j
* .data:00000000000082EDB DCB exF4
° .data:oee0e00000002EDC DCB exE
* .data:0000000000002EDD DCB ex84
* .data:0000000000082EDE DCB ex27 ; '
° .data:00000000000082EDF DCB ex47 ; G
‘ .data:0000000000002EEQ DCB @x64 ; d
° .data:0000000000002EE1 DCB exAl
° .data:0000000000002EE2 DCB exE4
* .data:00000000000082EE3 DCB exD9
° .data:00000000000082EE4 DCB @xEF
* .data:0000000000002EES DCB ex12
* .data:0000000000002EE6 DCB ex44 ; D
° .data:0000000000002EE7 DCB ex37 ; 7
.data:PP0PELBBBBRR2EE7 ; .data ends
.data: 900000000000 2EE7
extern:e0 BOBEB2EES ;

extern:2080000000002EES
extern:000000000BBB2EEE : Seement tvbe: Externs



AREA .rodata, DATA, READONLY, ALIGN=@
.rodata:0000000000000628 ; ORG @x628

.rodata:0000000000000628

v .rodata:0000000000000628 aThisisaxxteake DCB “ThisIsAXXteaKeyI“,B ; DATA XREF: Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+88lo
.rodata:0000000000000628 ; Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+94lo
.rodata:0000000000000638 aNative DCB "native",®@ ; DATA XREF: Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+40lo

3.HAUT

# ATEPA: & mm_bytes. key_bytes i%/RIFEIIZAT
import struct

def u32(x): return x & OxFFFFFFFF

def F(Cy, z, k, n):
return u32((((Cu*y) ~ (z >> 5)) + (Cy >> 3) » ((16 * z) & OXFFFFFFFF))) &
OXFFFFFFFF) ~ ((k ~ z) + (Cy ~ n)))

def decrypt(mm_bytes, key_bytes, rounds=12):
key = list(struct.unpack("<dI", Kkey_bytes))
v = list(struct.unpack("<8I", mm_bytes))
delta = 114514
for k in range(rounds, 0, -1):
n = u32(delta * K)
vid = (n >> 2) & 3
kO = key[vid]; k1 = key[vid " 1]; k2 = key[vid "~ 2]; k3 = key[vid * 3]
# WP (508 RREInEEAE KO
v20 = F(v[e]l, v[6], k3, n); v[7] = u32(v[7] - v20)
= FCv[7], v[51, k2, n); v[6] = u32(v[6] - t)
= F(vlel, v[d], K1, n); v[5] = u32(v[5] - t)
= F(v[5], v[3], k0, n); v[4] = u32(v[4] - t)
= FCv[4]l, v[2], K3, n); v[3] = u32(v[3] - t)
= F(v[3]1, v[1], k2, n); v[2] = u32(v[2] - t)
= F(v[2], v[e]l, ki1, n); v[1] = u32(v[1] - t)
t = FCv[1], v[7], kO, n); v[e] = u32(v[e] - t)
return struct.pack("<8I", *v)

t + + + +
I

if __name__ == "__main__":

# M IDA #£H) mm (32 bytes) , ARG KNG

mm_bytes = bytes([
0xB6,0x53,0x6E, 0xu4D,0x77,0x5D, 0x08,0xD2,
OxFB,0x2C,0x63,0x1E,0xBB,0x7B,0x01,0x9B,
OxF5,0x04,0x6A, 0xFU, 0x0E, 0x84,0x27,0x47,
Ox6U, OxA1, OXE4, OxD9, OXEF,0x12, OxLL , 0x37

1

# key = "ThisIsAXXteaKey",0
key_bytes = b"ThisIsAXXteaKey\x00"

plain = decrypt(mm_bytes, Key_bytes, rounds=12)



print("raw bytes:", plain)
try:

print("as utf-8:", plain.rstrip(b"\x00").decode('utf-8'))
except:

print("as latin-1:", plain.decode('latin-1'))

4,1FHiflag

flag{Ur_GOOd_@_n@tive_Func}

J\,Look at me carefully

1,idafcEE RS
Pseudocode—A 8 L3l Segments [x] @ Hex View-1 (]
Lfint __cdecl main(int argc, const char **argv, const char **envp)

char *v4; // [esp+18h] [ebp-64h]
char cH4_lelo_ookte_edv__alafle__ Syygume[4@]; // [esp+1Ch] [ebp-66h] BYREF
char v6[52]; // [esp+44h] [ebp-38h] BYREF

strcpy(cH4_lelo_ookte_edv__alafle_ Syygume, "cH4_lelo{ookte?edv_}alafle__ Syygume");
memset(v6, O, @x32u);
v4 = (char *)calloc(ex25u, 1u);

sub_FB1e58(Format); // "Please enter the flag: "
sub_FBlece("%s", ve6); /] "%s"

if ( strlen(ve) == 36 )

{

sub_FB16E@(v4, v6, 27);
sub_FB16EB(v4, vE, 5);
sub_FB16EB(v4, VvE, 6);
sub_FB16EB(v4, vE, 9);
sub_FB16E@(v4, v6, 28);
sub_FB16E@(v4, v6, 18);
sub_FB16E@(v4, v6, 32);
sub_FBl6E@(v4, ve, 29);
sub_FB16EB(v4, vE, 4);
sub_FB16E@(v4, v6, 11);
sub_FB16E@(v4, v6, 15);
sub_FB16E@(v4, v6, 17);
sub_FB16E@(v4, v6, 22);
sub_FB16EB(v4, vE, 8);
sub_FB16E@(v4, v6, 34);
sub_FB16E@(v4, v6, 16);
sub_FB16E@(v4, v6, 19);
sub_FB16EB(v4, vE, 7);
sub_FB16E@(v4, v6, 26);
sub_FB16E@(v4, v6, 35);
sub_FB16EB(v4, vE, 2);
sub_FB16E@(v4, v6, 14);
sub_FB16E@(v4, v6, 21);
sub_FB16EB(v4, vE, ©);
sub_FB16EB(v4, vE, 1);
sub_FB16E@(v4, v6, 25);
sub_FB16E@(v4, v6, 13);
sub_FB16E@(v4, v6, 23);
sub_FB16E@(v4, v6, 28);
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uction Data Unexplored External symbol [l Lumina function
g X Pseudocode—A [x] 2l Segments @ Hex View-1 Local Types
Seq . nsigned|

14

2{

3 int v4; // [esp+1@h] [ebp-Ch]
4 int v5; // [esp+14h] [ebp-8h]
5 char v6; // [esp+1Ah] [ebp-2h]
6
7
8

V5 = @;
v4 = -559038737;
9 while ( *((_BYTE *)al + v5) )

18 {

11 if ( (v5 & BXFFFFFFF@) == (v5 & OXFFFFFFF) )
12 va = (vd >> 29) | (8 * v4);

13 else

14 v4 = (v4 >> 2) & @x3FFFFFFF;

15 ++v5;

16 }

17 w6 = v4 ~ @x45 ~ *((_BYTE *)az + 23);

18 sub_FB13@@(al, a2);

19  *((_BYTE *)al + v5) = v4 " sub_FBllee(al, a2) " v&;

20 sub_FB13@@(al, a2);

21 sub_FBl3@e(al, =22);

22 *((_BYTE *)al + v5) ~= @xEFu;

23 peturn ((2 * (((23 | ©x55) ~ (16 * v5)) & Ox55555555)) | ((23 | ©x55) ~ (16 * v5)) & OXAAAAAAAA) ~ v4 & OXFFOOFFOO;
24}

2, X F AR EHNEE, FB2SREE, EEHRIF LK, XN ZailV k24

# 1. XREFNIAAMN. EHERIEHTR
target = "cHu4_lelo{ookte?@dv_}alafle___5yygume"

# 2. X sub_FB16EO i ¥ FHIZR 5| IF
indices = [

27, 5, 6, 9, 28, 18, 32, 29, 4, 11, 15, 17, 22, 8, 34, 16, 19, 7, 26,

2, 14, 21, o, 1, 25, 13, 23, 20, 37, 30, 33, 10, 3, 12, 36, 24, 31

# 3. GlE— 38 NMERKITFIRKAR flag
# (target #1 indices %IEKIKEZHZ 38)
flag = ['?'] * len(target)

# U, AT IR
# AVHIE target[0] ( 'c
# FM15E target[1] ( 'H!
# e
for i in range(len(target)):
flag_index = indices[i] # MiZfFMMIALE
target_char = target[i] # NOZAE )

KE flag[27]

)
) kA flagl[5]

flag[flag_index] = target_char

# 5. {TEN4
print("".join(flag))

3,18 7 RIERflag

Imports

35,



flau{Hdve_gom_loOked_at_?e_cloy?ly?}e5
4, BRATUBEXEFRHBEBAL BB EF oM 7 aIRAKE, L 7 Efiflag

flag{Hdve_you_loOked_at_me_clo5ely?}

71,Forgotten_Code

1, XN AR X AL RIE S 88, o] LB EttR 247, 7] Llgeck (b Hexe I EidasR 341,

EttPEI T main, #TEF
.seh proc main

main:
.LFB189:

push rbp
seh pushreg rbp
mov rbp, rsp
seh setframe rbp, 0
sub rsp, 144
.seh stackalloc 144
.seh endprologue
call main
lea rax, .LCO[rip]
MOV rcx, rax
call Z6printfPKcz
lea rax, -112[rbp]
lea rex, .LC1][rip]
mov rdx, rax
call Z5scanfPKcz
lea rdx, .LC2[rip]
lea rax, -112[rbp]
mov r8d, 5
MOV rcx, rax
call strncmp
test eax, eax
jne .L11
lea rax, -112[rbp]
MOV rcx, rax
call strlen
sub rax, 1
movzx eax, BYTE PTR -112[rbp+rax]

—rmmam =1 AT

2, XK MZRTHGA TEARZNEN 8 FTRME, ERESREA fn BI7E ng LK[E XOR



ox11 BEZAENT
#!/usr/bin/env python3

decrypt_tea.py

Reproduce TEA decryption and key toggling from
the disassembly, then print recovered flag.

from struct import pack, unpack

def u32(x):
return x & OxFFFFFFFF

def bytes_to_u32_list(b):
# little-endian -> list of uint32
return [unpack('<l', b[i:i+4])[0] for i in range(0, len(b), 4)]

def teadecrypt(vO, v1, k):

"""Standard TEA decrypt: vO,v1 are uint32, k is list of 4 uint32"""
delta = 0x9E3779B9

mask = OXFFFFFFFF

sum = (delta * 32) & mask

v0 = u32(v0); v1 = u32(v1)

k0,k1,k2,k3 = [u32(x) for x in k]

for in range(32):

vl =u32(v1 - ((((vO << 4) + k2) * (vO + sum) * ((vO >> 5) + k3))))
v0 =u32(vO0 - ((((v1 << 4) + kO) * (v1 + sum) * ((v1 >>5) + k1))))
sum = u32(sum_ - delta)

return vO, v1

def main():

# ezgm dwords extracted from the binary (as signed in disasm); convert to u32
ezgm = [

1210405119, 710975774,

-90350153, -1958008304,

-745722482, 67707510,

-86515270, -1728462407

]

ezgm_u = [u32(x) for x in ezgm]

# original ng bytes from disassembly: "sp\177vuctp]|xeb|hv~"
ng_orig = b"sp\x7fvuctp|xeb|hv~" # 16 bytes



# keyO = ng_orig interpreted as 4 little-endian uint32
key® = bytes_to_u32_list(ng_orig)

# keyl = ng_orig XOR 0x11 on each byte, then interpreted
ng_xored = bytes(byte * 0x11 for byte in ng_orig)

keyl = bytes_to_u32_list(ng_xored)

# There are U4 blocks of 8 bytes (32 bytes payload). For block i:
# encryption used keyl for even i (i=0 -> keyl), key0® for odd i (matching
disasm).
plaintext_blocks = []
for i in range(d):
key = keyl if (i % 2 == 0) else key0
cO = ezgm_ul[2*i]
cl = ezgm_u[2*i + 1]
pO, pl = tea_decrypt(cO, cl, key)
plaintext_blocks.append(pack('<II', p0, pl))

payload = b''.join(plaintext_blocks)[:32]
flag = b"flag{" + payload + b"}"

print("Recovered payload (hex):", payload.hex())

# print payload safely (latinl to avoid decode errors)
print("Recovered payload (latinl):", payload.decode('latinl'))
print("\nRecovered flag:")

print(flag.decode('latinl'))

if name == "main";
main()

3,1Fttiflag

flag{u553m8ly_5_s00000_3u45y_jD5yQ5mD9}

+,R—x1, FH3GE (1)



1, XNMBTERRREDA T, ReEfTasmEEEER, MR L Ercd iR

PALRLACANN BRI R R b b

(~) Hex View-1 B [0 Local Types
mov [rbp+508@h+var_558], rax
mov rax, OF2F@82F69E2E@BF4Dh
mov [rbp+580h+var 558], rax
mov rax, ©E1278329086B51BCh
mov [rbp+58@h+var_548], rax
mowv rax, 4E4F80B188C6BDCBh
mov [rbp+508Bh+var_548], rax
lea rax, aEasyjunkcodes ; "EasyJunkCodes"
mov [rbp+50@h+var_20], rax
mov rax, [rbp+508h+var_20]
mowv rcx, rax = 5tr
call strlen
mov [rbp+58@h+var_24], eax
mov ecx, [rbp+500h+var 24]
mov rdx, [rbp+508h+var_20]
lea rax, [rbp+508h+var_530]
mov r8d, ecx
mow rcx, rax
call rcd _init
mov eax, [rbp+508h+var_14]
movsxd rcx, eax
mov rdx, [rbp+508h+Str] ; Src
lea rax, [rbp+508h+var_438]
mov r8, rcx ; Size
mov rcx, rax ; void *
call memcpy_©
mov ecx, [rbp+588h+var 14]
lea rdx, [rbp+5@8h+var_430]
lea rax, [rbp+500h+var_538]
mov r8d, ecx

2, BRreAMMEBNEARIFERR T




__int64  fastcall rcd crypt( int64 al, int6d a2, int i 2)
e
_inte4 i_1; // rax
char v4; // [rsp+3h] [rbp-Dh]
unsigned int i; // [rsp+4h] [rbp-Ch]
int v6; // [rsp+8h] [rbp-8h]
int v7; // [rsp+Ch] [rbp-4h]

1

2

3

1

5

5

7

3

3 v7 = 0;

B ve = @;

1 for (1 =0; ; ++1 )
2 A

3 i1 = 1;
1 if ( (int)i »=1i2)

5 break;

5 v7 = (v7 + 1) % 256;

7 ve = (*{unsigned int® *)(al + v7) + v6) % 256;
3 va = ¥(_BYTE *)(al + v7);

3

3

1

2

3

1

5

5

#(_BYTE #)(al + v7) = *(_BYTE #)(al + v6);
#( BYTE *)(v6 + al) = vi;
¥(_BYTE *)((int)}i + a2) = *(_BYTE *)(a2 + *(unsigned _ int8 *)(al + v7)

+ (unsigned int)*(unsigned __ int8 *)(al + v6)})
+ *¥(_BYTE *)(al + (unsigned __ int8)(*{_BYTE *)(al + v7) + *¥(_BYTE *)(al + v6)));
¥

return 1_1;

]
3,L1"EasyJunkCodes"Hikey, fRZEK
#E"C77FC1430364751188B88C55F6C023DF4D0OF2E9EF682F0F2BC516B08298327E1CBBD
C688B1804F4E" i@l ZA~aN T

def rcud_init(key: bytes) -> list:

WIGAA BECLRCU I S—boX

key_len = len(key)
# 1. S-boxMESHIIAL
s_box = [(256 - i) % 256 for i in range(256)]

# 2. FRAEMIKSAE it 2

j=20

for i in range(256):
j = (j + s_box[i] + key[i % key_len]) % 256
s_box[i], s_box[j] = s_box[j], s_box[i]

return s_box

def rcu_decrypt(s_box_init: list, ciphertext: bytes) —> bytes:

1 A4k 5 ) S—box il 2 i
# HilS-box, FAMEIESIBEREIRES
s_box = list(s_box_init)

i=0
j=6o
plaintext = bytearray()



for char_code in ciphertext:
# PRGA: A #HIR
i=0(01+1) % 256
j = (j + s_box[i]) % 256
s_box[i], s_box[j] = s_box[j], s_box[i]

# IHEEHRT T K
keystream_byte = s_box[(s_box[i] + s_box[j]) % 256]

# RERME: P = (C - K) % 256

# N 256 U 1R PR 4ES RN IE

decrypted_byte = (char_code - keystream_byte + 256) % 256
plaintext.append(decrypted_byte)

return bytes(plaintext)

# — TP —-
if __name__ == "__main__":

# N FKey 1% ST

key = b"EasyJunkCodes"

ciphertext_hex =
"C77FC1430364751188B88C55F6C023DFUDOF2E9EF682FOF2BC516B08298327E1CBBDC688B1304
FUg"

# RN BES AR R ROy T
ciphertext = bytes.fromhex(ciphertext_hex)

print(f"Key: {key.decode()}")
print(f"Ciphertext (hex): {ciphertext_hex}")
print("-" * 30)

# 1. WIiH1LS-box
s_box_initialized = rcid_init(key)

# 2. fRESdE

plaintext = rcid_decrypt(s_box_initialized, ciphertext)

# 3. fiHER
try:

print(f"Decrypted Flag: {plaintext.decode('utf-8')}")
except UnicodeDecodeError:

print(f"Decrypted Data (bytes): {plaintext}")



4,13 Hiflag

flag{Junk_C0d3s_udRe_3uU5y_t0O_rEcOgnlZe!!}



