TR S newstarweek 112895 H

KAE %
—, XO0r

1,5%cAdieTE B &AM T, 2 [5idaF] 7+

_main();

puts(“"Please input your flag: ");
scanf("%25s", Str);

n24 = strlen(str);

if (n24 == 24)

{
for (n24 1 = ©; n24 1 < n24; ++n24 1)
{
if ((n24 1% 3)
{
if (n24 1 %3 ==1)
Str[n24_1] "= exllu;
else
Str[n24 1] "= ©x45u;
}
else
{
Str[n24 1] ~= exl4u;
¥
¥
UE[B] = 19;
UE[I] = 19;
VE[Z] = 81;
for (n24 2 = @ n24 2 < n24; ++n24 2)
Str[n24_2] "= v5[n24_2 % 3];
strcpy(Str2, "anu ym7wKL1$P]v3g%D]1Hpi"™);
if (!strcmp(Str, Str2))
puts("Right flag!");
else
puts("Wrong flag!");
return @;
¥
else
{

puts("Wrong flag length!");
IRYEE RER A A2 NN A N A R SNE, R a0 T

decode_flag.py
target = "anu'ym7wKL1$P]v3q%D]lHpi"
keys = [0x07, 0x02, 0x1d]

https://imgchr.com/i/pVv4eoQ
https://imgchr.com/i/pVv4eoQ

flag = ''.join(chr(ord(ch) * keys[i % 3]) for i, ch in enumerate(target))
print(flag)

flag{yOu_Know_buUs1C_xOr}

—,Strange Base

1,82 TR, EE NN

1| _inte4 _ fastcall main()
2 {

w

int binlength; // eax

size_t Size; // rax

char enc[48]; // [rsp+28h] [rbp-98h] BYREF

unsigned __int8 output[48]; // [rsp+56h] [rbp-66h] BYREF
unsigned _ int8 input[48]; // [rsp+86h] [rbp-36h] BYREF

_main();
memset(input, @, sizeof(input));
memset(output, @, sizeof(output));
puts("It's time to show your flag to me~~~");
strcpy(enc, "T>6uTqOatL39aP!YIqruyv(YBA!8y7o0uCa9=");
scanf_s("%s", input);
binlength = strlen((const char *)input);
base64_encode(input, (char *)output, binlength);
Size = strlen(enc);
if (!memcmp(output, enc, Size))

printf("Oh! You're awesome!!!™);
else

puts(“"Wrong!™);
return ©;

}

e Laas vaiuwm oo [o 1 SvuuULUUL L [- 1 ovuuULUaL a1 [—_— — e —_ L A raiuwm o4

WM R W10 Ww & WRERE WD - oo &

L

Address Length Type String

. rdata:0--+ 00000041 C HE1Lo!A=CrQzy—B4S3|is’ walTtlng&Y0u [/ (>v<)*} G0 256789pPaWXVK JNMF
'# .rdata:0--- 00000025 C It's time to show your flag to me
'# .rdata:0'-- 00000016 C Oh! You're awesome!!!

& Tl 2baseb4 4D, (B 2B EWIR T WA T (EL M haTAR)

N

decode_custom_bé64. py
import baseé6d

import sys

import string

https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4JwF
https://imgchr.com/i/pVv4Yo4
https://imgchr.com/i/pVv4Yo4

MR SO 5 1K) baseed LR

cipher = "T>6uTqOatL39aP!YIqruyv(YBA!8y7ouCa9="
custom_alphabet = "HElLo!A=CrQzy-
BUS3|is'waITtlng&YOu"{/(>v<)*}G0~256789pPqWXVKINMF"

brift Base6l TRER
std_alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

if len(custom_alphabet) != 64:
print("Error: custom alphabet length must be 64.")
sys.exit(1)

EFHE: custom —> standard
trans_table = str.maketrans({custom_alphabet[i]: std_alphabet[i] for i in
range(64)})

SRR custom BLSS[E] standard
translated = cipher.translate(trans_table)

try:

decoded_bytes = base6u.b6Udecode(translated, validate=False)
except Exception as e:

print("base6ld decode error:", e)

sys.exit(1)

R E TN utf-8 A, KRMUNE/RELM bytes

try:
decoded_text

except:
decoded_text

decoded_bytes.decode('utf-8', errors='ignore')

None

ERREATATEHZR (BHl7R) , HREM BN
def strip_trailing_control(s):
NOREZIGAFTEN A7 (URE printable A WHATHIF)
while s and s[-1] not in (string.printable):
s = s[:-1]
B REREIRF BT IR R CGERIEH 7R
while s and (ord(s[-1]) < 32 or ord(s[-1]) == 127):
s = s[:-1]
return s

if decoded_text is not None:
clean = strip_trailing_control(decoded_text)
print("Decoded (utf-8, cleaned):")
print(clean)

else:
print("Decoded bytes (hex):", decoded_bytes.hex())
print("Decoded bytes (raw):", decoded_bytes)

=,Pullze

1. X7 idas iU amvie nRETXE®Em
1 int Puzzle Challenge()

2 {

3 char Destination[4]; // [rsp+26h] [rbp-1Ah] BYREF

4 char *Y@u; // [rsp+36h] [rbp-16h]

5 char *Source; // [rsp+38h] [rbp-8h]

6

7 Source = "Do_ ";

8 Yeu = “"Yeu_";

9 strcpy(Destination, "Do_");

@ strcat(Destination, Yeu);

1 return puts("Welcome to the Jigsaw Puzzle Game!");

2 }

IDA V--- B =l Pseudoc -+ B [E] Pseudoc - [[E Pseudoc*+ [[E] Pseudoc - [[E] Pseudoc - [[E Ps
1 fint Like_7his_Jig()
2 {

® 3 puts("Congratulations! You found the second part of the flag--The function name.");
® 4 return printf("Observing function names is an important step in reverse engineering.");
®5

}

https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv47Tg
https://imgchr.com/i/pVv4T0S
https://imgchr.com/i/pVv4T0S

IDA V.= [Pseudoc* B Pseudoc - [l Pseudoc -+ [l Pseudoc:*+ |

1 __int64 Its_about_part3()

2 {

3 __inté4 n8_3; // rax

4 _BYTE vi[1e]; // [rsp+2Ah] [rbp-16h]
5 int n8_1; // [rsp+34h] [rbp-Ch]

6 int n8; // [rsp+38h] [rbp-8h]

7 int n8_2; // [rsp+3Ch] [rbp-4h]

8

® 9 printf("You can use shift+e to extract the data.");
e 18 n8 = 8B;

@11 n8 1 = 8;

©12 for (n8 2 =0; n8.2 < n8_1; ++n8_2)

e 13 vl[n8 2] = encrypted_array[ng 2] ™ ©xAD;

® 14 n8_3 = nd_1;

e 15 vl1[n8_1l] = 6;

® 16 return nd_3;

e 17 }

4000 ;org 1408884806nh

4000 public flag part 4

4000 flag part_4 db 'le_Gam3',@

4008 ; const char Buffer[]

4008 Buffer db 'Congratulations! You found

2, F=REFENNE, FEEMHANT

M IDA F#kFIMINZ %y (encrypted_array HIFT 8 ANFTH)
encrypted_data = bytes([OxDE, OxED, OxDA, 0xF2, OxDD, 0xD8, OxD7, 0xD7])

M Its_about_part3 %3k 37 e
xor_key = OxAD

M T AR Ja
decrypted_data = bytearray()

ORI IAT R R

for byte in encrypted_data:
decrypted_byte = byte " xor_key
decrypted_data.append(decrypted_byte)

B e T RO A (& ASCII B¢ UTF-8 #whd)

https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv4om8
https://imgchr.com/i/pVv45Of
https://imgchr.com/i/pVv45Of

A .decode() JfAbFEA]REMIEE 1R
try:

(BRI BHIAA A

decrypted_string = decrypted_data.decode('utf-8')

except UnicodeDecodeError:

decrypted_string = "Error decoding bytes"

FTENZS

print(f"Encrypted Hex: {encrypted_data.hex()}")
print(f"XOR Key: Ox{xor_key:02x}")

print(f"Decrypted Hex: {decrypted_data.hex()}")
print(f"Decrypted Part 3: {decrypted_string}")

3, AP HiRHflagh

flag{Do_YOu_Like_7his_Jigs@w_puzzle_Gam3}

4,EzMyDroid

1 {RIER B iR T E R 21 M, BjadxiTF B XS EAIRREI T

@ i OB Sw I8 B¢ #5H *app-release - jadx-gui = (m] X
= # S 2 O 06 Q AOM > FO& B F
app-release.apk < &R € MainActivity ¢, FirstFragment €, AESECBUtils ¢, SecondFragment ~
F?ﬁw}\r /* loaded From: classes2.dex */
A 15 public class [FirstFragment extends Fragment {
_COROUTINE private FragmentFirstBinding binding;
android.support.vi i .
droid @override // androidx.fragment.app.Fragment
androlicx 26 public View onCreatevView(LayoutInflater layoutInflater, ViewGroup viewGroup, Bundle bundl
com.google 27 FragmentFirstBinding fragmentFirstBindingInflate = FragmentFirstBinding.inflate(layou
kotlin this .binding = fragmentFirstBindingInflate;
kotlinx.coroutines 28) return fragmentFirstBindingInflate.getRoot();
org
work.pangbai.ezmydroid @override // androidx.fragment.app.Fragment
databinding 32 public veid onviewCreated(vView view, Bundle bundle) {

& AESECBUtils 33 super.onViewCreated(view, bundle);
C.F' tF t 35 this.binding.checkFlag.setOnClickListener(new View.OnClickListener() { // from class:
~ II_‘S rég'!'en @override // android.view.View.OnClickListener
€ MainActivity 37 public void onClick(view view2) {
%R try {
¢, SecondFragment u2 String strEncrypt = AESECBUtils.encrypt(FirstFragment.this.binding.input.

YRR 43 Log.i("result", strEncrypt);

BTIR 4y if (strEncrypt.equals("cTz2pDh18fRMfkkIXfqs2t8IBsqLkvQZDLYpWFELKLE=")) {
assets us Toast.makeText(FirstFragment.this.getContext(), "Right !!!", 0).shou(
kotlin } else {

META-INF 47 Toast.makeText(FirstFragment.this.getContext(), "Wrong !!!", 0).show(
}
res 3 X } catch (Exception unused) {

w AndroidManifest.xml

5 classes.dex }

;- classes2.dex } 1
DebugProbesKt.bin
not-supported-adapter.list @override // androidx.fragment.app.Fragment

Jl resources.arsc 59 public void onDestroyvView() {

APK signature 60 super.onDestroyView();

this .binding = null;
[=] Summary)
}
iaE:] ezl Smali Simple Fallback Split view

2, 5 MIZ D 2AES-128 i1ZZ+ Baseb4 4wi5

decrypt_aes_ecb.py
import base6d
from Crypto.Cipher import AES

cipher_b6d = "cTz2pDh18fRMfkkJIXfqs2t8IBsqLKkvQZDLYpWjEtKLE="
key = b"1145141919810000" # 5 Java fRIGHAHFEN 16 F15 key

ct = baseé6u.b6uUdecode(cipher_bé6u)
cipher = AES.new(key, AES.MODE_ECB)
pt_bytes = cipher.decrypt(ct)

def unpad_pkcs7(data):

if len(data) == 0:
return data

pad = data[-1]

if pad < 1 or pad > AES.block_size:
return data

if data[-pad:] !'= bytes([pad]) * pad:
return data

return datal:-pad]

unpadded = unpad_pkcs7(pt_bytes)
try:

plaintext = unpadded.decode('utf-8')
except:

plaintext = repr(unpadded)

print("Decrypted plaintext:", plaintext)

B iflagh

flag{@_g00d_st@r7_for_ANDROID}

4,plzdebugme

1 EERBLNBEBAdbRIEIFR

o~ B wmMmBE

-~ B

nt _ fastcall main(int argc, const char **argv, const char **envp)

int keylen; // eax

char c; // [rsp+Fh] [rbp-5E1lh]

uint32_t v[2]; // [rsp+28h] [rbp-5C8h] BYREF
uint32_t k[4]; // [rsp+3eh] [rbp-5Ce8h] BYREF
RC4_CTX rcd; // [rsp+4eh] [rbp-5Beh] BYREF

uint8_t rcd_key[4]; // [rsp+156h] [rbp-4ABh] BYREF
uint8_t chacha_nonce[12]; // [rsp+154h] [rbp-49Ch]
uint8_t aes_key[16]; // [rsp+l6eh] [rbp-498h] BYREF
uint8_t aes_iv[16]; // [rsp+17@h] [rbp-48@h] BYREF
uint8_t chacha_key[32]; // [rsp+188h] [rbp-476h]
uint8_t rc4_out[32]; // [rsp+lABh] [rbp-458h] BYREF
uint8_t aes_out[32]; // [rsp+lC8h] [rbp-438h] BYREF
unsigned __ int8 out[1e32]; // [rsp+lEeh] [rbp-41eh] BYREF
unsigned _ int64 v17; // [rsp+5E8h] [rbp-8h]

v1l7 = __readfsqword(@x28u);

printf(" Debug is important!!!.\n");

printf("You can get the flag directly by debugging\n");

printf("The debugging process is similar to that of Windows\n");

printf("HINT: You can find the flag character style in the function xer(), break on it\n");
hexchar2int(c);

*(_QWORD *)chacha_key = @xA9ABATAG6ASA4A3A2LL;

*(_QWORD *)&chacha key[8] = @xC2C1B6B5B9B5B3BLLL;

*(_QWORD *)&chacha_key[16] = @;
*(_QWORD *)&chacha_key[24] = ©;

*(_QWORD *)chacha_nonce = @x69D4D4DDDD4D2D5LL ;
*(_DWORD *)&chacha_nonce[8] = ©;

strcpy((char *)rca_key, "Wow");

keylen = strlen((const char *)rc4_key);
rc4_init(&rc4, rc4_key, keylen);
rcd_crypt(&-c4, ciphertext, rc4_out, 32);
*(_QWORD *)aes key = @xA6D2AE2816157E2BLL;
*(_QWORD *)&aes key[8] = 0x1141467597F7ABLL;
*(_QWORD *)aes_iv = ©x4511144511144511LL;
*(_QWORD *)&zes iv[8] = ©x1114451114451114LL;

aes_de(aes_out, rc4_out, 32, aes_key, ses_iv);
memcpy (out, z2es _out, ex2eu);

v[@] = 1751720303;

v[1] = 1633904993;

k[el] = 1;

k[1] = 2;

k[2] = 3;

00002774 main:=1 (2774)

2,9dbiFiA 1T R FE R

(gdb) si x0r (cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001",
1en=11202057548) at plzdebugme_linux.c:376 376 in plzdebugme_linux.c (gdb)
info registers rip rdi rip 0x555555556687 0x555555556687 <x0r> rdi
OxT7fffffffdo50 140737u883u5u24 (gdb) finish Run till exit from #0 xOr
(cipher=0x7fffffffd798 "\260\323<\227\253\362{y\001", 1en=11202057548) at
plzdebugme_linux.c:376 Breakpoint 1, xOr (cipher=0x7fffffffd950
"7=06%\030%b\016\025b3$6\026\016\005" *<Up\016=Ub\016!=0(,\260\332\377\377\377\
177", len=32)' at plzdebugme_linux.c:377 377 in plzdebugme_linux.c (gdb) info
registers rdi rdi Ox7fffffffd950 140737u4883u5u24 (gdb) x/32c $rdi
OXT7fffffffd956: 55 '7' 61 '=' 48 'G' 54 '6' 42 'x' 24 '\030' 37 '%' 98 'b'
OXTFFFFFf£d958: 14 '\016' 21 '\025' 98 'b' 51 '3' 36 '$' 54 '6' 22 '\026' 1uU
'"\016' OxT7fffffffdo960: 5 '\0O5' 96 ''' 96 ''' 60 '<' 52 '4' 112 'p' 14 '\0l6’
61 '=' OxTfffffffdo68: 52 '4' 98 'b' 14 '\016' 33 '!' 61 '=' 48 'O' 4O '(' u4

'," (gdb) printf "%.xs\n", 32, (charx) $rdi ‘*' not supported for precision or
width in printf' (gdb) x/32c $rbp-0xu410 printf "%.*s\n", 32, (char*)($rbp-
0x410) A syntax error in expression, near ‘printf "%.*s\n", 32, (charx)($rbp-
oxu410)'." (gdb)

3 R AN T

python3 - <<'PY'

data =
bytes.fromhex("373d30362a1825620e1562332436160e0560603c34700e3d3U4620e213d30282
c")

plain = bytes(b " 0x51 for b in data)

print(plain.decode())

PY

4,15 tiflag

flag{It3_D3bugG_T1llme!_le3_play}

7N LR -Rhmkaie (1)

1 ,dieEEﬁﬁ,ﬁﬁupxz’E;ﬂi}Eidaﬁ*ﬁ

1un vLTW N A A i — = DLl LuEs

le
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3e
31
32
33
34
35
36
37
38
39
te
11
42
43
14
45
16
47
48
49
5@
51
52
53

uTA viow

_QWORD v10[4]; // [rsp+6@h] [rbp-4@h] BYREF
__intl6 n16753; // [rsp+8eh] [rbp-26h]

char v12; // [rsp+86h] [rbp-1Ah]

char v13; // [rsp+87h] [rbp-19h]

__int64 n34; // [rsp+88h] [rbp-18h]
unsigned _ int64 i; // [rsp+96h] [rbp-18h]
char v16; // [rsp+9Fh] [rbp-1h]

_main(*(__inte4 *)&argc, (__inte4)argv, (__inté4)envp);
gmemcpy (v18, "isfhGI\tt~cU\ny\nuTjcj\tT~cj", 24);
v18[3] = ex5e47B777E756451LL;

nle753 = 16753;

n34 = 34;

std::string::basic_string(vo);

std: :operator<<<std::char_traits<char>>(refptr__ZSt4cout, "Enter your flag: ");
std::operator>><char>(refptr__ZSt3cin, v9);
encrypt((__inte4)v8, (__inte4)va);

n34 1 = std::string::length(vg);

if (n34 == n34_1)

v5 = std::string::length(vg);
if (1 >=v5)

break;
if (IsDebuggerPresent())

v12 = *(_BYTE *)std::string::operator[](v8, 1) ~ @xC3;
if (viz = *((_BYTE *)vie + i))
{
v1ie = @;
break;
1
}
else
{
vl3 = *(_BYTE *)std::string::operator[](v8, 1) ~ @x3C;
if (vi3 1= *((_BYTE *)vie + i))
{
vlie = @;
break;
}
1

OOOO_OBB9 main:10 (1400015B9)

IDA View-A x| Pseudocode-A 8 [#] Strings

Hex V:

int64 _ fastcall encrypt(__int64 al, __inté4 a2)

rHl

1
2
3 unsigned __int64 v2; // rax

4 char v4; // [rsp+27h] [rbp-19h] BYREF

5 char *v5; // [rsp+28h] [rbp-18h]

6 char C; // [rsp+37h] [rbp-9h]

7 unsigned __int64 i; // [rsp+38h] [rbp-8h]
8

e 9 v5 = &v4;
® 18 std::string::basic_string<std::allocator<char>>(al, &unk_l4eecC7eee, &v4);
® 11 std::__new_allocator<char>::~__new_allocator(&v4);
12 for (1=0; ; ++i)
13 {
e 14 v2 = std::string::length(a2);
® 15 if (1 >=v2)
® 16 break;
® 17 C = *(_BYTE *)std::string::operator[](a2, 1i);
® 13 if ((unsigned int)(C - 48) > 9)
19 {
® 20 if (islower(C) || isupper(C))
e 21 std::string::operator+=(al, (unsigned int)(char)(-69 - C));

22 else

® 23 std::string::operator+=(al, (unsigned int)C);
24 }
25 else
26 {
® 27 std::string::operator+=(2l, (unsigned int)(char)(le5 - C));
28 }
29}
® 30 return z1;
® 31}
raatavuuuuoul4vol ruae 30rg Ll4vgl/ovan
v.rdata:00e00001400C7000 unk_l1400C7000 db 2] ; DATA XREF: encrypt(std::string const&)+21to

mdedk e . AAAANAANY AAAFATAARTY . ek ALIARR Fed o - £ o

2 {TFFencrypt EEE S SN M T

reconstruct expected bytes used for comparison in main

prefix = b"isfhGJ\tt~cU\ny\nuTjcj\tT~cj" # 24 bytes literal from
gqmemcpy

v10_3 = (0x5047B777E756U51).to_bytes(8, 'little') # the 8-byte QWORD assigned
to v10[3]

nl6753 = (16753).to_bytes(2, 'little') # Ox4l71 —> bytes 0x71 0xul

v10_full = prefix + v10_3 + nl6753 # total 34 bytes

def recover(vlO_bytes, debugger=False):
xor_key = 0xC3 if debugger else 0x3C
out = []
for b in v10_bytes:

enc = b * xor_key # this is what encrypt produced (out)

inverse of encrypt:

if out corresponds to digit: out = 105 - C => C = 105 - out

pd = 105 - enc

if 48 <= pd <= 57:
out.append(chr(pd)); continue
if out corresponds to letter: out = (char)(-69 - C) => C = (-69 -
out) mod 256
pl = (=69 - enc) & OxFF
if (65 <= pl <= 90) or (97 <= pl <= 122):
out.append(chr(pl)); continue
otherwise symbol unchanged
out.append(chr(enc))
return ''.join(Cout)

print("v10 bytes hex:", v10_full.hex())

print("Recovered (non-debug) flag:", recover(vlO_full, debugger=False))
print("Recovered (debug) flag :", recover(v10_full, debugger=True))

4,13 tiflag

flag{Edsy_R3v3rSe_elUSy_eNcryptlOn}

+5,0hNativeEnc

1, PR REWH,XMERTEN native RIBTEHIE"R1ES IS EIX C/C++ BN, MAE
JADX 27K Java/Kotlin X3, H B L =R Native KIB@EERRIFA .so (Shared Object) X
, JADX HREKEENNEN], B TapktREESHEE, T EMbandzipt T E, KB HFHIsoX
HFHIRENH K,

© app-release.apk - Bandizip (Professional)
Z#HE) REE B0 SmO) wENV IBRO #EH)

X {4 EBandiZipf TR ZIPX{415?

') app-release.apk 2R - ERE AN BaAN 2R

> assets |
> = kotlin [libohnativeenc.so 6,136 6,136 SO T
v __lib
. armb4-v8a
___ armeabi-v/a
__ xB86
__x86 64
> META-INF
> res

3Tf: 938, XA 0, R4EAA/N 894 MB

2, XE R X AR AR E X 5 %A

] IDA View-A (] = Pseudocode—B %] = Pseudocode—A (x] = Strings [x] @l Hex View-1]] Local Types <]
d g;| __int64 v28; // [xsp+28h] [xbp-8h]
® 29 v28 = *(_QWORD *)(_ReadStatusReg(TPIDR_EL@) + 48);
® 30 src = (const char *)(*(__int64 (_ fastcall **)(_ int64, _ int64, _QWORD))(*(_QWORD *)al + 1352LL))(al, a3, 0);
® 31 _ android_log_print(4, "native", "input:%s", src);
® 32 dest_ = Qu;
® 33 v27 = Qu;
| ® 34 strnepy((char *)&dest_, src, ex2eu);
1e35 va=v27;
® 36 v5 = DWORD1(v27);
® 37 7 = DWORD2(v27);
© 338 v6 = HIDWORD(v27);
® 39 dest 1 = dest_;
® 48 v9 = DWORD1(dest_);
® 41 v1l = DWORD2(dest_);
g ® 42 v1@ = HIDWORD(dest);
Teas viz = -12;
1 ® 44 nl14514 = 114514;
n 45 do
L 46 {
® 47 vi4 = (n114514 >> 2) & 3;
® 48 v15 = *(_DWORD *)&aThisisaxxteake[4 * v14];
® 49 v16 = *(_DWORD *)&aThisisaxxteake[4 * (vi4 ~ 1)];
® 50 v17 = _ CFADD_ (viZ++, 1);
e 51 dest_ 1 4= (((4 * v38) ~ (v6 >> 5)) + ((v3 >> 3) ~ (16 * v6))) ~ ((vi5 ~ v6) + (v8 ~ ni14514));
® 52 v18 = *(_DWORD *)&aThisisaxxteake[4 * (vi4 ~ 2)];
® 53 v 4= (((4 * vil) ~ (dest_ 1 >> 5)) + ((vil »> 3) ~ (16 * dest_ 1))) ~ ((v16 ~ dest_ 1) + (vil ~ n114514));
e 54 v19 = *(_DWORD *)&aThisisaxxteake[4 * (v14 * 3)];
® 55 Vi1 = (((4 * v18) ~ (v9 5> 5)) + ((v18 >> 3) ~ (16 * v8))) ~ ((vi8 ~ v9) + (vie ~ nl14514));
® 56 V18 4= (((4 * va) ~ (vil >> 5)) + ((v& > 3) ~ (16 * vi1))) ~ ((v19 ~ vil) + (v4 ~ n114514));
®57 va += (((4 * v5) A (v18 >> 5)) + ((v5 >> 3) A (16 * vie))) ~ ((vi5 ~ vie) + (v5 ~ n114514));
® 58 v5s 4= (((4 * v7) ™ (vd >> 5)) + ((v7 >> 3) ~ (16 * v4))) ~ ((vie ~ v4) + (v7 ~ nlld514));
® 59 V7 4= (((&4 * vB) ~ (v5 »> 5)) + ((v6 >> 3) ~ (16 * v5))) ~ ((vi8 ~ v5) + (v6 ~ nl14514));
® 60 v20 = (((4 * dest__ 1) ~ (v7 >> 5)) + ((dest__ 1 >> 3) ~ (16 * v7))) ~ ((v1i9 ~ v7) + (dest__ 1 ~ nll14514));
® 61 nl14514 += 114514;
® 62 V6 += v208;
63 }
® 64 while (!v17);
® 65 *(_QWORD *)&dest_ = _ PAIR64_ (v9, dest_ 1);
® 66 *((_QWORD *)&dest + 1) = _ PAIR64_ (v1@, vil);
® 67 *(_QWORD *)8&v27 = _ PAIR64__(v5, v4);
© 63 *((_OWORD *)&v27 + 1) = _ PAIR64__(V6, v7);
® 69 if ((unsigned __int8)mm[@] != (unsigned _ int8)dest_ 1)
| ®7e return @;
000009A0 Java_work pangbai_ohnativeenc_FirstFragment_checkFlag:27 (9A0)
.data:eeee000000082ECE EXPORT mm
.data:0000000000002EC8 ; char mm[32]
" ~.data:2000000000002EC8 mm DCB exBé6 ; DATA XREF: LOAD:©©02e000000000F8T0
.data:00000000000B2ECS ; LOAD:oeeeeoceeee003D8TO0 ..
° .data:0000000000082ECO DCB ex53 ; S
° .data:0000000000082ECA DCB @x6E ; n
‘ .data:0000000000002ECB DCB ex4D ; M
° .data:0000000000002ECC DCB ex77 ; w
° .data:0000000000002ECD DCB @ex5D ;]
* .data:00000000000082ECE DCB 8
° .data:0000000000082ECF DCB exD2
* .data:0000000000002EDO DCB exFB
* .data:oeeoee0eeeee2ED1 DCB ex2C ; ,
° .data:0©00000000002ED2 DCB ex63 ; ¢
* .data:00000000000082ED3 DCB ex1E
° .data:oeeeee0ee00e02ED4 DCB ©exBB
* .data:0000000000002EDS DCB @ex7B ; {
* .data:00000000000082ED6 DCB 1
° .data:©©00000000082ED7 DCB ex9B
* .data:0000000000002ED8 DCB exF5
* .data:oee0e00000082ED9 DCB 4
° .data:0000000000002EDA DCB @x6A ; j
* .data:00000000000082EDB DCB exF4
° .data:oee0e00000002EDC DCB exE
* .data:0000000000002EDD DCB ex84
* .data:0000000000082EDE DCB ex27 ; '
° .data:00000000000082EDF DCB ex47 ; G
‘ .data:0000000000002EEQ DCB @x64 ; d
° .data:0000000000002EE1 DCB exAl
° .data:0000000000002EE2 DCB exE4
* .data:00000000000082EE3 DCB exD9
° .data:00000000000082EE4 DCB @xEF
* .data:0000000000002EES DCB ex12
* .data:0000000000002EE6 DCB ex44 ; D
° .data:0000000000002EE7 DCB ex37 ; 7
.data:PP0PELBBBBRR2EE7 ; .data ends
.data: 900000000000 2EE7
extern:e0 BOBEB2EES ;

extern:2080000000002EES
extern:000000000BBB2EEE : Seement tvbe: Externs

AREA .rodata, DATA, READONLY, ALIGN=@
.rodata:0000000000000628 ; ORG @x628

.rodata:0000000000000628

v .rodata:0000000000000628 aThisisaxxteake DCB “ThisIsAXXteaKeyI“,B ; DATA XREF: Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+88lo
.rodata:0000000000000628 ; Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+94lo
.rodata:0000000000000638 aNative DCB "native",®@ ; DATA XREF: Java_work_pangbai_ohnativeenc_FirstFragment_checkFlag+40lo

3.HAUT

ATEPA: & mm_bytes. key_bytes i%/RIFEIIZAT
import struct

def u32(x): return x & OxFFFFFFFF

def F(Cy, z, k, n):
return u32((((Cu*y) ~ (z >> 5)) + (Cy >> 3) » ((16 * z) & OXFFFFFFFF))) &
OXFFFFFFFF) ~ ((k ~ z) + (Cy ~ n)))

def decrypt(mm_bytes, key_bytes, rounds=12):
key = list(struct.unpack("<dI", Kkey_bytes))
v = list(struct.unpack("<8I", mm_bytes))
delta = 114514
for k in range(rounds, 0, -1):
n = u32(delta * K)
vid = (n >> 2) & 3
kO = key[vid]; k1 = key[vid " 1]; k2 = key[vid "~ 2]; k3 = key[vid * 3]
WP (508 RREInEEAE KO
v20 = F(v[e]l, v[6], k3, n); v[7] = u32(v[7] - v20)
= FCv[7], v[51, k2, n); v[6] = u32(v[6] - t)
= F(vlel, v[d], K1, n); v[5] = u32(v[5] - t)
= F(v[5], v[3], k0, n); v[4] = u32(v[4] - t)
= FCv[4]l, v[2], K3, n); v[3] = u32(v[3] - t)
= F(v[3]1, v[1], k2, n); v[2] = u32(v[2] - t)
= F(v[2], v[e]l, ki1, n); v[1] = u32(v[1] - t)
t = FCv[1], v[7], kO, n); v[e] = u32(v[e] - t)
return struct.pack("<8I", *v)

t + + + +
I

if __name__ == "__main__":

M IDA #£H) mm (32 bytes) , ARG KNG

mm_bytes = bytes([
0xB6,0x53,0x6E, 0xu4D,0x77,0x5D, 0x08,0xD2,
OxFB,0x2C,0x63,0x1E,0xBB,0x7B,0x01,0x9B,
OxF5,0x04,0x6A, 0xFU, 0x0E, 0x84,0x27,0x47,
Ox6U, OxA1, OXE4, OxD9, OXEF,0x12, OxLL , 0x37

1

key = "ThisIsAXXteaKey",0
key_bytes = b"ThisIsAXXteaKey\x00"

plain = decrypt(mm_bytes, Key_bytes, rounds=12)

print("raw bytes:", plain)
try:

print("as utf-8:", plain.rstrip(b"\x00").decode('utf-8'))
except:

print("as latin-1:", plain.decode('latin-1'))

4,1FHiflag

flag{Ur_GOOd_@_n@tive_Func}

J\,Look at me carefully

1,idafcEE RS
Pseudocode—A 8 L3l Segments [x] @ Hex View-1 (]
Lfint __cdecl main(int argc, const char **argv, const char **envp)

char *v4; // [esp+18h] [ebp-64h]
char cH4_lelo_ookte_edv__alafle__ Syygume[4@]; // [esp+1Ch] [ebp-66h] BYREF
char v6[52]; // [esp+44h] [ebp-38h] BYREF

strcpy(cH4_lelo_ookte_edv__alafle_ Syygume, "cH4_lelo{ookte?edv_}alafle__ Syygume");
memset(v6, O, @x32u);
v4 = (char *)calloc(ex25u, 1u);

sub_FB1e58(Format); // "Please enter the flag: "
sub_FBlece("%s", ve6); /] "%s"

if (strlen(ve) == 36)

{

sub_FB16E@(v4, v6, 27);
sub_FB16EB(v4, vE, 5);
sub_FB16EB(v4, VvE, 6);
sub_FB16EB(v4, vE, 9);
sub_FB16E@(v4, v6, 28);
sub_FB16E@(v4, v6, 18);
sub_FB16E@(v4, v6, 32);
sub_FBl6E@(v4, ve, 29);
sub_FB16EB(v4, vE, 4);
sub_FB16E@(v4, v6, 11);
sub_FB16E@(v4, v6, 15);
sub_FB16E@(v4, v6, 17);
sub_FB16E@(v4, v6, 22);
sub_FB16EB(v4, vE, 8);
sub_FB16E@(v4, v6, 34);
sub_FB16E@(v4, v6, 16);
sub_FB16E@(v4, v6, 19);
sub_FB16EB(v4, vE, 7);
sub_FB16E@(v4, v6, 26);
sub_FB16E@(v4, v6, 35);
sub_FB16EB(v4, vE, 2);
sub_FB16E@(v4, v6, 14);
sub_FB16E@(v4, v6, 21);
sub_FB16EB(v4, vE, ©);
sub_FB16EB(v4, vE, 1);
sub_FB16E@(v4, v6, 25);
sub_FB16E@(v4, v6, 13);
sub_FB16E@(v4, v6, 23);
sub_FB16E@(v4, v6, 28);

P W W W Y U W S WY W W W Y U W e WY W W W T U YT 4 WY W W W T U YT 4 WYY

uction Data Unexplored External symbol [l Lumina function
g X Pseudocode—A [x] 2l Segments @ Hex View-1 Local Types
Seq . nsigned|

14

2{

3 int v4; // [esp+1@h] [ebp-Ch]
4 int v5; // [esp+14h] [ebp-8h]
5 char v6; // [esp+1Ah] [ebp-2h]
6
7
8

V5 = @;
v4 = -559038737;
9 while (*((_BYTE *)al + v5))

18 {

11 if ((v5 & BXFFFFFFF@) == (v5 & OXFFFFFFF))
12 va = (vd >> 29) | (8 * v4);

13 else

14 v4 = (v4 >> 2) & @x3FFFFFFF;

15 ++v5;

16 }

17 w6 = v4 ~ @x45 ~ *((_BYTE *)az + 23);

18 sub_FB13@@(al, a2);

19 *((_BYTE *)al + v5) = v4 " sub_FBllee(al, a2) " v&;

20 sub_FB13@@(al, a2);

21 sub_FBl3@e(al, =22);

22 *((_BYTE *)al + v5) ~= @xEFu;

23 peturn ((2 * (((23 | ©x55) ~ (16 * v5)) & Ox55555555)) | ((23 | ©x55) ~ (16 * v5)) & OXAAAAAAAA) ~ v4 & OXFFOOFFOO;
24}

2, X F AR EHNEE, FB2SREE, EEHRIF LK, XN ZailV k24

1. XREFNIAAMN. EHERIEHTR
target = "cHu4_lelo{ookte?@dv_}alafle___5yygume"

2. X sub_FB16EO i ¥ FHIZR 5| IF
indices = [

27, 5, 6, 9, 28, 18, 32, 29, 4, 11, 15, 17, 22, 8, 34, 16, 19, 7, 26,

2, 14, 21, o, 1, 25, 13, 23, 20, 37, 30, 33, 10, 3, 12, 36, 24, 31

3. GlE— 38 NMERKITFIRKAR flag
(target #1 indices %IEKIKEZHZ 38)
flag = ['?'] * len(target)

U, AT IR
AVHIE target[0] ('c
FM15E target[1] ('H!
e
for i in range(len(target)):
flag_index = indices[i] # MiZfFMMIALE
target_char = target[i] # NOZAE)

KE flag[27]

)
) kA flagl[5]

flag[flag_index] = target_char

5. {TEN4
print("".join(flag))

3,18 7 RIERflag

Imports

35,

flau{Hdve_gom_loOked_at_?e_cloy?ly?}e5
4, BRATUBEXEFRHBEBAL BB EF oM 7 aIRAKE, L 7 Efiflag

flag{Hdve_you_loOked_at_me_clo5ely?}

71,Forgotten_Code

1, XN AR X AL RIE S 88, o] LB EttR 247, 7] Llgeck (b Hexe I EidasR 341,

EttPEI T main, #TEF
.seh proc main

main:
.LFB189:

push rbp
seh pushreg rbp
mov rbp, rsp
seh setframe rbp, 0
sub rsp, 144
.seh stackalloc 144
.seh endprologue
call main
lea rax, .LCO[rip]
MOV rcx, rax
call Z6printfPKcz
lea rax, -112[rbp]
lea rex, .LC1][rip]
mov rdx, rax
call Z5scanfPKcz
lea rdx, .LC2[rip]
lea rax, -112[rbp]
mov r8d, 5
MOV rcx, rax
call strncmp
test eax, eax
jne .L11
lea rax, -112[rbp]
MOV rcx, rax
call strlen
sub rax, 1
movzx eax, BYTE PTR -112[rbp+rax]

—rmmam =1 AT

2, XK MZRTHGA TEARZNEN 8 FTRME, ERESREA fn BI7E ng LK[E XOR

ox11 BEZAENT
#!/usr/bin/env python3

decrypt_tea.py

Reproduce TEA decryption and key toggling from
the disassembly, then print recovered flag.

from struct import pack, unpack

def u32(x):
return x & OxFFFFFFFF

def bytes_to_u32_list(b):
little-endian -> list of uint32
return [unpack('<l', b[i:i+4])[0] for i in range(0, len(b), 4)]

def teadecrypt(vO, v1, k):

"""Standard TEA decrypt: vO,v1 are uint32, k is list of 4 uint32"""
delta = 0x9E3779B9

mask = OXFFFFFFFF

sum = (delta * 32) & mask

v0 = u32(v0); v1 = u32(v1)

k0,k1,k2,k3 = [u32(x) for x in k]

for in range(32):

vl =u32(v1 - ((((vO << 4) + k2) * (vO + sum) * ((vO >> 5) + k3))))
v0 =u32(vO0 - ((((v1 << 4) + kO) * (v1 + sum) * ((v1 >>5) + k1))))
sum = u32(sum_ - delta)

return vO, v1

def main():

ezgm dwords extracted from the binary (as signed in disasm); convert to u32
ezgm = [

1210405119, 710975774,

-90350153, -1958008304,

-745722482, 67707510,

-86515270, -1728462407

]

ezgm_u = [u32(x) for x in ezgm]

original ng bytes from disassembly: "sp\177vuctp]|xeb|hv~"
ng_orig = b"sp\x7fvuctp|xeb|hv~" # 16 bytes

keyO = ng_orig interpreted as 4 little-endian uint32
key® = bytes_to_u32_list(ng_orig)

keyl = ng_orig XOR 0x11 on each byte, then interpreted
ng_xored = bytes(byte * 0x11 for byte in ng_orig)

keyl = bytes_to_u32_list(ng_xored)

There are U4 blocks of 8 bytes (32 bytes payload). For block i:
encryption used keyl for even i (i=0 -> keyl), key0® for odd i (matching
disasm).
plaintext_blocks = []
for i in range(d):
key = keyl if (i % 2 == 0) else key0
cO = ezgm_ul[2*i]
cl = ezgm_u[2*i + 1]
pO, pl = tea_decrypt(cO, cl, key)
plaintext_blocks.append(pack('<II', p0, pl))

payload = b''.join(plaintext_blocks)[:32]
flag = b"flag{" + payload + b"}"

print("Recovered payload (hex):", payload.hex())

print payload safely (latinl to avoid decode errors)
print("Recovered payload (latinl):", payload.decode('latinl'))
print("\nRecovered flag:")

print(flag.decode('latinl'))

if name == "main";
main()

3,1Fttiflag

flag{u553m8ly_5_s00000_3u45y_jD5yQ5mD9}

+,R—x1, FH3GE (1)

1, XNMBTERRREDA T, ReEfTasmEEEER, MR L Ercd iR

PALRLACANN BRI R R b b

(~) Hex View-1 B [0 Local Types
mov [rbp+508@h+var_558], rax
mov rax, OF2F@82F69E2E@BF4Dh
mov [rbp+580h+var 558], rax
mov rax, ©E1278329086B51BCh
mov [rbp+58@h+var_548], rax
mowv rax, 4E4F80B188C6BDCBh
mov [rbp+508Bh+var_548], rax
lea rax, aEasyjunkcodes ; "EasyJunkCodes"
mov [rbp+50@h+var_20], rax
mov rax, [rbp+508h+var_20]
mowv rcx, rax = 5tr
call strlen
mov [rbp+58@h+var_24], eax
mov ecx, [rbp+500h+var 24]
mov rdx, [rbp+508h+var_20]
lea rax, [rbp+508h+var_530]
mov r8d, ecx
mow rcx, rax
call rcd _init
mov eax, [rbp+508h+var_14]
movsxd rcx, eax
mov rdx, [rbp+508h+Str] ; Src
lea rax, [rbp+508h+var_438]
mov r8, rcx ; Size
mov rcx, rax ; void *
call memcpy_©
mov ecx, [rbp+588h+var 14]
lea rdx, [rbp+5@8h+var_430]
lea rax, [rbp+500h+var_538]
mov r8d, ecx

2, BRreAMMEBNEARIFERR T

__int64 fastcall rcd crypt(int64 al, int6d a2, int i 2)
e
_inte4 i_1; // rax
char v4; // [rsp+3h] [rbp-Dh]
unsigned int i; // [rsp+4h] [rbp-Ch]
int v6; // [rsp+8h] [rbp-8h]
int v7; // [rsp+Ch] [rbp-4h]

1

2

3

1

5

5

7

3

3 v7 = 0;

B ve = @;

1 for (1 =0; ; ++1)
2 A

3 i1 = 1;
1 if ((int)i »=1i2)

5 break;

5 v7 = (v7 + 1) % 256;

7 ve = (*{unsigned int® *)(al + v7) + v6) % 256;
3 va = ¥(_BYTE *)(al + v7);

3

3

1

2

3

1

5

5

#(_BYTE #)(al + v7) = *(_BYTE #)(al + v6);
#(BYTE *)(v6 + al) = vi;
¥(_BYTE *)((int)}i + a2) = *(_BYTE *)(a2 + *(unsigned _ int8 *)(al + v7)

+ (unsigned int)*(unsigned __ int8 *)(al + v6)})
+ *¥(_BYTE *)(al + (unsigned __ int8)(*{_BYTE *)(al + v7) + *¥(_BYTE *)(al + v6)));
¥

return 1_1;

]
3,L1"EasyJunkCodes"Hikey, fRZEK
#E"C77FC1430364751188B88C55F6C023DF4D0OF2E9EF682F0F2BC516B08298327E1CBBD
C688B1804F4E" i@l ZA~aN T

def rcud_init(key: bytes) -> list:

WIGAA BECLRCU I S—boX

key_len = len(key)
1. S-boxMESHIIAL
s_box = [(256 - i) % 256 for i in range(256)]

2. FRAEMIKSAE it 2

j=20

for i in range(256):
j = (j + s_box[i] + key[i % key_len]) % 256
s_box[i], s_box[j] = s_box[j], s_box[i]

return s_box

def rcu_decrypt(s_box_init: list, ciphertext: bytes) —> bytes:

1 A4k 5) S—box il 2 i
HilS-box, FAMEIESIBEREIRES
s_box = list(s_box_init)

i=0
j=6o
plaintext = bytearray()

for char_code in ciphertext:
PRGA: A #HIR
i=0(01+1) % 256
j = (j + s_box[i]) % 256
s_box[i], s_box[j] = s_box[j], s_box[i]

IHEEHRT T K
keystream_byte = s_box[(s_box[i] + s_box[j]) % 256]

RERME: P = (C - K) % 256

N 256 U 1R PR 4ES RN IE

decrypted_byte = (char_code - keystream_byte + 256) % 256
plaintext.append(decrypted_byte)

return bytes(plaintext)

— TP —-
if __name__ == "__main__":

N FKey 1% ST

key = b"EasyJunkCodes"

ciphertext_hex =
"C77FC1430364751188B88C55F6C023DFUDOF2E9EF682FOF2BC516B08298327E1CBBDC688B1304
FUg"

RN BES AR R ROy T
ciphertext = bytes.fromhex(ciphertext_hex)

print(f"Key: {key.decode()}")
print(f"Ciphertext (hex): {ciphertext_hex}")
print("-" * 30)

1. WIiH1LS-box
s_box_initialized = rcid_init(key)

2. fRESdE

plaintext = rcid_decrypt(s_box_initialized, ciphertext)

3. fiHER
try:

print(f"Decrypted Flag: {plaintext.decode('utf-8')}")
except UnicodeDecodeError:

print(f"Decrypted Data (bytes): {plaintext}")

4,13 Hiflag

flag{Junk_C0d3s_udRe_3uU5y_t0O_rEcOgnlZe!!}

