
逆向第二周wp
逆向题目wp

张程思

一,pyz3
1,根据题目名称可知这是一道关于py的逆向题目,之前在ctfbase做过几乎一模一样的

2,先按这个流程解包 PyInstaller 的文件;

3,使用pycdc反编译其中的task.pyc文件提取py代码

4,分析后发现这段代码的原理是通过一个36x36的线性方程组来验证输入的Flag,根据题目提示需
要下载Z3 约束求解器,于是解题脚本如下

import z3

f 是一个列表，包含36个Z3的整型变量，代表flag的36个字节

f = [z3.Int(f'f_{i}') for i in range(36)]

创建一个求解器实例

s = z3.Solver()

--- 从代码中提取的系数矩阵 A 和结果向量 b ---

A 是 36x36 的系数矩阵

A = [

[47, 41, 32, 56, 52, 67, 13, 25, 20, 98, 88, 65, 82, 92, 3, 29, 93, 88,

45, 58, 40, 72, 99, 10, 94, 62, 82, 92, 23, 46, 55, 72, 44, 9, 65, 42],

[10, 98, 5, 28, 68, 20, 2, 22, 65, 44, 85, 97, 33, 74, 93, 74, 41, 65, 32,

93, 22, 69, 68, 57, 47, 29, 74, 54, 91, 90, 26, 11, 89, 57, 100, 95],

[25, 22, 54, 5, 8, 3, 12, 70, 25, 61, 68, 12, 27, 42, 83, 91, 67, 46, 8,

45, 94, 80, 69, 95, 12, 21, 94, 82, 93, 41, 4, 56, 92, 77, 15, 30],

[33, 49, 56, 40, 90, 59, 82, 6, 81, 32, 23, 76, 93, 83, 10, 44, 58, 33,

79, 77, 82, 56, 70, 34, 45, 76, 57, 43, 100, 19, 11, 90, 3, 60, 57, 23],

[65, 70, 20, 32, 75, 30, 3, 78, 35, 45, 95, 93, 52, 32, 88, 94, 67, 34,

91, 88, 31, 61, 17, 99, 100, 49, 4, 60, 81, 88, 43, 34, 30, 52, 18, 100],

[81, 42, 28, 98, 31, 46, 64, 15, 49, 13, 100, 81, 32, 52, 59, 24, 94, 32,

93, 32, 13, 89, 37, 30, 78, 81, 9, 45, 93, 100, 97, 10, 80, 54, 88, 85],

[76, 54, 5, 14, 62, 44, 24, 29, 85, 87, 19, 3, 65, 24, 92, 37, 57, 20, 45,

5, 13, 91, 92, 75, 36, 79, 12, 22, 75, 82, 28, 82, 24, 53, 56, 92],

[53, 52, 72, 23, 26, 13, 62, 96, 67, 96, 66, 41, 5, 18, 37, 13, 61, 71,

91, 96, 56, 3, 65, 14, 57, 69, 75, 68, 10, 60, 62, 95, 53, 19, 7, 56],

[26, 7, 49, 14, 36, 87, 21, 35, 15, 91, 15, 100, 8, 32, 100, 35, 66, 3,

79, 96, 82, 95, 68, 13, 86, 51, 24, 76, 30, 60, 29, 70, 40, 90, 44, 3],

[47, 19, 37, 93, 73, 30, 45, 47, 72, 85, 37, 68, 89, 34, 4, 50, 87, 33,

87, 43, 9, 61, 93, 49, 74, 49, 68, 29, 54, 54, 37, 79, 33, 65, 59, 15],

[79, 73, 60, 62, 25, 16, 77, 81, 79, 31, 82, 84, 62, 36, 18, 20, 46, 57,

21, 40, 3, 50, 58, 80, 84, 71, 87, 3, 13, 77, 83, 39, 55, 34, 41, 63],

[7, 50, 26, 79, 21, 42, 83, 94, 63, 83, 3, 68, 25, 91, 3, 5, 17, 61, 3,

40, 87, 11, 27, 74, 73, 21, 56, 46, 36, 24, 14, 63, 21, 71, 30, 53],

[57, 51, 49, 15, 94, 34, 27, 5, 100, 68, 67, 81, 10, 5, 85, 70, 80, 20,

89, 30, 84, 35, 41, 87, 75, 67, 20, 33, 29, 6, 97, 25, 10, 18, 23, 30],

[97, 93, 10, 44, 28, 22, 17, 41, 47, 62, 42, 47, 61, 32, 31, 52, 47, 92,

42, 37, 7, 40, 48, 40, 11, 96, 51, 42, 66, 8, 89, 64, 30, 11, 8, 83],

[51, 94, 58, 76, 21, 10, 75, 4, 55, 37, 71, 97, 27, 93, 82, 94, 38, 69,

36, 58, 93, 18, 54, 59, 12, 12, 54, 83, 73, 83, 33, 12, 78, 38, 45, 57],

[78, 29, 8, 47, 48, 88, 18, 88, 50, 58, 36, 88, 9, 74, 85, 5, 91, 58, 85,

46, 89, 76, 61, 6, 61, 78, 4, 48, 50, 69, 23, 70, 23, 15, 22, 68],

[75, 2, 94, 97, 72, 62, 78, 42, 69, 11, 37, 3, 29, 15, 39, 33, 18, 33, 12,

64, 6, 18, 34, 15, 3, 100, 85, 32, 97, 93, 84, 73, 26, 31, 71, 97],

[59, 26, 48, 86, 58, 70, 61, 100, 63, 74, 26, 38, 24, 45, 52, 32, 91, 89,

19, 59, 87, 5, 15, 68, 72, 67, 2, 65, 46, 10, 33, 79, 11, 16, 73, 53],

[6, 66, 59, 76, 86, 20, 59, 34, 28, 48, 86, 5, 87, 13, 95, 87, 65, 35, 58,

10, 98, 100, 4, 78, 66, 57, 34, 86, 62, 36, 92, 28, 3, 24, 49, 28],

[25, 48, 44, 16, 99, 100, 69, 26, 65, 32, 18, 65, 58, 72, 61, 56, 10, 78,

93, 98, 39, 43, 87, 12, 42, 100, 100, 47, 31, 51, 75, 10, 63, 48, 22, 87],

[61, 13, 100, 59, 31, 9, 28, 7, 27, 63, 11, 57, 95, 79, 21, 30, 60, 81,

43, 32, 30, 34, 80, 53, 28, 39, 74, 21, 18, 92, 73, 60, 21, 69, 76, 84],

[22, 62, 61, 20, 66, 2, 11, 82, 93, 13, 69, 37, 92, 80, 66, 47, 28, 14,

62, 56, 89, 29, 39, 38, 46, 10, 6, 82, 77, 78, 45, 50, 5, 73, 17, 65],

[5, 84, 83, 77, 76, 60, 20, 48, 53, 14, 98, 50, 37, 15, 31, 69, 55, 37,

64, 35, 26, 20, 18, 67, 50, 57, 60, 71, 4, 35, 23, 52, 11, 15, 83, 51],

[33, 47, 89, 52, 89, 55, 98, 28, 48, 90, 69, 29, 68, 24, 19, 18, 44, 27,

14, 64, 15, 31, 23, 2, 36, 45, 37, 71, 61, 92, 28, 64, 13, 66, 98, 3],

[80, 88, 68, 66, 46, 75, 32, 19, 36, 83, 63, 86, 79, 30, 61, 50, 100, 52,

66, 30, 20, 97, 45, 46, 38, 21, 32, 79, 68, 43, 65, 47, 86, 30, 74, 18],

[11, 58, 95, 67, 96, 74, 60, 11, 21, 14, 100, 60, 70, 92, 92, 39, 43, 52,

5, 22, 90, 70, 12, 52, 36, 21, 45, 59, 74, 46, 11, 60, 8, 52, 14, 77],

[57, 37, 94, 43, 53, 55, 7, 83, 91, 61, 86, 6, 44, 87, 61, 92, 24, 74,

100, 22, 12, 68, 19, 88, 81, 83, 70, 39, 30, 82, 30, 35, 55, 18, 27, 80],

[80, 14, 5, 89, 71, 82, 44, 8, 33, 26, 77, 49, 36, 90, 73, 71, 66, 4, 37,

78, 38, 18, 15, 79, 6, 74, 18, 85, 56, 53, 90, 75, 52, 2, 13, 54],

[96, 29, 37, 70, 92, 80, 24, 36, 32, 29, 78, 45, 58, 55, 16, 92, 71, 82,

86, 23, 4, 58, 16, 18, 38, 53, 82, 76, 83, 73, 87, 36, 61, 85, 61, 69],

[14, 71, 53, 46, 59, 53, 22, 69, 67, 43, 23, 14, 77, 95, 19, 83, 79, 41,

12, 53, 3, 4, 65, 92, 64, 52, 3, 59, 89, 75, 12, 46, 61, 53, 97, 43],

[57, 99, 49, 100, 68, 99, 26, 65, 47, 65, 90, 68, 84, 4, 9, 43, 88, 33,

48, 88, 37, 31, 21, 94, 22, 93, 70, 14, 13, 28, 83, 12, 80, 58, 43, 97],

[33, 94, 56, 48, 13, 44, 81, 42, 19, 96, 67, 79, 12, 67, 34, 72, 45, 48,

24, 71, 65, 13, 32, 97, 48, 42, 65, 95, 54, 9, 35, 57, 18, 20, 83, 76],

[31, 38, 83, 45, 28, 97, 54, 11, 80, 45, 92, 13, 52, 94, 51, 30, 11, 61,

46, 10, 28, 72, 20, 95, 90, 39, 32, 95, 19, 3, 65, 71, 73, 80, 23, 71],

[9, 81, 80, 37, 96, 72, 95, 93, 26, 98, 50, 79, 57, 13, 49, 96, 82, 84,

89, 40, 38, 66, 81, 81, 79, 77, 86, 68, 26, 37, 15, 56, 13, 17, 50, 37],

[82, 57, 33, 32, 79, 25, 54, 27, 50, 14, 72, 31, 28, 66, 4, 6, 48, 34, 63,

51, 12, 21, 73, 66, 53, 38, 54, 59, 76, 63, 61, 30, 84, 80, 98, 46],

[69, 15, 23, 8, 46, 55, 21, 91, 37, 9, 61, 20, 23, 96, 28, 67, 19, 50, 18,

71, 30, 14, 10, 24, 100, 15, 91, 15, 93, 24, 46, 61, 67, 60, 56, 81]

]

b 是 36 个等式的结果

b = [

176386, 186050, 154690, 172116, 190544, 190323, 162017, 165118,

153332, 168472, 178706, 143852, 154052, 147899, 176754, 171970,

166497, 173887, 173189, 174138, 157623, 154943, 156078, 156158,

181770, 173577, 180922, 158596, 181072, 163777, 187620, 169266,

5,得出flag

二,Dont-debug-me
1,ida查看伪代码,其中有提示,包括题目也是提示,需要我们进行调试代码,先分析一下代码逻辑,如
下路径可看出得出flag的方法

162587, 198705, 160349, 148095

]

添加约束条件：

1. Flag的字符都是可打印的ASCII字符（范围 32 到 126）

for i in range(36):

s.add(f[i] >= 32, f[i] <= 126)

2. 添加36个线性方程

for i in range(36):

z3.Sum 计算点积 (A[i][0]*f[0] + A[i][1]*f[1] + ...)

equation = z3.Sum([A[i][j] * f[j] for j in range(36)]) == b[i]

s.add(equation)

检查是否能找到解

if s.check() == z3.sat:

获取解

m = s.model()

从模型中提取flag的每个字节（整数）

res = [m[f[i]].as_long() for i in range(36)]

将整数列表转换回字符串

flag_str = "".join(map(chr, res))

print(f"🎉 成功找到Flag：")

print(flag_str)

else:

print("❌ 未能找到解。")

flag{PytH0n_R3v3rs1Ng_4nd_Z3_s0lV3r}

2,知道了如何得到flag的途径后我们就分析一下asm页面,找到哪个分支是正确的绕过路径

3,第一个判断语句在jz这一行,于是f2设置断点,并使用本地调试器进行调试,这里我自己调了好多
次,最后得出的正确绕过路径是

4,调试后进入找到这个页面,由于jz 是 “Zero Flag is Set” 的缩写，意思是只有当 ZF=1时，才执行
跳转,所以我们将1改为0,使其分支跳转到有scanf的这边,

5,f8调试到这里就可以得出flag啦

三, ezAndroid
1,apk附件可得是安卓逆向,放到jadx里看一下,查找mainactive函数,大概是base64然后又调用了一
些函数,按照之前做安卓逆向的经验,我直接把apk里的so后缀文件单独解压出来放ida,发现就是简
单的异或

2,还缺少密文,ida中找不到,于是查看之前的apk文件,发现flag文件还在其中

3,直接赛博厨子梭哈

四,出题人已疯

1,放die里发现是net类型,需要用dnspy打开,

2,于是查看dnspy,找到main函数

3,脚本如下

-*- coding: utf-8 -*-

"""

Reverse-engineer the encoded title from crazy_nonsense.MainWindow

Recovered flag: BaseCTF{y0u_KnOw_UTF16_6uT_U_r_n0t_Cr@zym@n}

"""

import itertools

========== 1. 原始数据 ==========

题目给出的 byte[] title

title_bytes = [

250, 81, 152, 152, 186, 78, 242, 93,

175, 117, 27, 103, 104, 84, 229, 119

]

这些字符串在程序里参与了异或

sentences = [

"你以为我还会在乎吗？😬😬😬我在昆仑山练了六年的剑😟😟😟我的心早就和昆仑山的雪一样

冷了😐😐😐我在大润发杀了十年的鱼😫😫😫我以为我的心早已跟我的刀一样冷了😩😩😩",

"我早上坐公交滴卡的时候和司机大叔说“两个人”，司机惊讶地看着我“你明明就是一个人，为什么

要滴两个人的卡？”我回他，“我心中还有一个叫Kengwang的。”司机回我说，“天使是不用收钱的。”",

"（尖叫）（扭曲）（阴暗的爬行）（扭动）（阴暗地蠕动）（翻滚）（激烈地爬动）（痉挛）（嘶

吼）（蠕动）（阴森的低吼）（爬行）（分裂）（走上岸）（扭曲的行走）（不分对象攻击）",

"地球没我照样转？硬撑罢了！" * 6,

"扭曲上勾拳！阴暗的下勾拳！尖叫左勾拳！右勾拳爬行！扭动扫堂腿！分裂回旋踢！这是蜘蛛阴暗

的吃耳屎，这是龙卷风翻滚停车场！乌鸦痉挛！老鼠嘶吼！大象蠕动！愤怒的章鱼！无差别攻击！无差别

攻击！无差别攻击！"

]

拼接所有文本

source_text = "".join(sentences)

source_bytes = list(source_text.encode("utf-16-le")) # Unicode 转 UTF-16 LE 字

节序

========== 2. C# 加密逻辑模拟 ==========

def encrypt(input_text):

"""模拟原程序中的 Encoding.Unicode + mod + 异或 流程"""

output = []

for i, ch in enumerate(input_text):

v = (ord(ch) * ord(ch)) % 0x10000

与 source 的第 i 个字节异或（原始 C# 程序是 UTF-16 编码，因此

source_bytes[i]）

v ^= source_bytes[i]

output.append(v)

return output

========== 3. 穷举反推解密 ==========

def decrypt(target):

result_chars = []

for i, val in enumerate(target):

src = source_bytes[i]

found = None

只考虑常规可见 ASCII 范围

for c in range(32, 127):

if ((c * c) % 0x10000) ^ src == val:

found = chr(c)

break

if found is None:

raise ValueError(f"无法解出第 {i} 位")

result_chars.append(found)

return "".join(result_chars)

五,ezbase
1,ida分析后发现找不到main函数,于是本地调试跑一下,找到了关键的逻辑

2,发现是base64,但码表应该被换了,于是分析换表的函数,

========== 4. 主流程 ==========

if __name__ == "__main__":

flag = decrypt(title_bytes)

print("Recovered flag:", flag)

验证：重新加密后应与原数据一致

assert encrypt(flag) == title_bytes

print("Verification passed ✅")

3,由此推出完整的魔改表

4,shift+f12找到目标编码字符串

5,解题脚本如下

CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89

TqK1YUSaQryEMHaLMnWhYU+Fe0WPenqhRXahfkV6WE2fa3iRW197Za62eEaD

def decrypt(ciphertext, modified_table, key):

构建魔改表的索引映射（字符→索引）

table_index = {char: idx for idx, char in enumerate(modified_table)}

cipher_len = len(ciphertext)

plaintext = []

按4个字符一组处理（对应3字节明文）

for i in range(0, cipher_len, 4):

取当前组的4个字符（确保不越界）

group = ciphertext[i:i+4]

if len(group) < 4:

break # 忽略不完整的组（通常不会出现）

1. 查魔改表索引 → 2. 减去对应key偏移 → 3. 模64得到原始6位组索引

indices = []

for j in range(4):

c = group[j]

m = table_index[c] # 魔改表中索引

k = key[j % 4] # 循环取key

original_idx = (m - k) % 64 # 原始6位组索引

indices.append(original_idx)

六,UPX PRO

4个6位组合并为24位整数（3字节）

combined = (indices[0] << 18) | (indices[1] << 12) | (indices[2] << 6)

| indices[3]

拆分24位为3个字节（8位/字节）

byte1 = (combined >> 16) & 0xFF

byte2 = (combined >> 8) & 0xFF

byte3 = combined & 0xFF

添加到明文（过滤空字节，通常不会有）

plaintext.append(chr(byte1))

plaintext.append(chr(byte2))

plaintext.append(chr(byte3))

拼接并截断到45字节（题目要求的flag长度）

return ''.join(plaintext)[:45]

已知条件

modified_table =

"CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89"

key = [1, 2, 3, 4]

ciphertext = "TqK1YUSaQryEMHaLMnWhYU+Fe0WPenqhRXahfkV6WE2fa3iRW197Za62eEaD"

解密

flag = decrypt(ciphertext, modified_table, key)

print("解密结果：", flag)

1,有壳,但尝试脱壳失败

2,放到101中看看关键的几处有没有被改,发现最后的标志位错了,将4
F改为F4即可脱壳

3,ida先查看encode

4,梭哈出来密钥

5,查看c4函数,发现就是改轮数的rc4加密

6,解题脚本如下

#!/usr/bin/env python3

coding: utf-8

solve_flag.py

根据题目中的伪代码还原出 BUU（flag）

注意：init 函数中 k[i] = k[i % Len_k2] 的实现有 bug（k 全为 0），脚本按原始伪代码行

为实现。

def u64_to_le_bytes(x):

把 64-bit 常量拆成 8 个小端字节（低位在前）

return [(x >> (8*i)) & 0xFF for i in range(8)]

def build_nss_array():

vals = [

0x364A65466C271216,

0x2447243568082139,

0x29323C0F5A1A7D60,

0x4D647C3C45531544,

0x74152339130F7024

]

b = []

for v in vals:

b.extend(u64_to_le_bytes(v))

只需要前 40 bytes（5*8=40）

return bytes(b[:40])

def init_s_with_bug(len_k2):

按照题目 init 实现（包含 bug）：k 被 memset 为 0，之后 k[i] = k[i % Len_k2]

(仍为0)

s = list(range(128))

k 初始化为 128 个 0（效果与原代码给出一致）

k = [0] * 128

j = 0

for i in range(128):

j = (k[i] + j + s[i]) % 128

s[i], s[j] = s[j], s[i]

return s

def rc4_prga_bytes(s, length):

生成 length 个 keystream 字节，按照题目 PRGA (128 模)

s = s[:] # 拷贝

i = 0

j = 0

out = []

for k in range(length):

i = (i + 1) % 128

j = (j + s[i]) % 128

s[i], s[j] = s[j], s[i]

t = (s[i] + s[j]) & 0x7F

out.append(s[t])

return bytes(out)

def c4_xor(data_bytes, key_bytes_len):

与题目 c4 对应：init 使用 p_crypt 和 Len_k2，但因 bug 实际上与 p_crypt 无关

s = init_s_with_bug(key_bytes_len)

ks = rc4_prga_bytes(s, len(data_bytes))

7,flag为

Data[k] ^= ks[k]

return bytes([data_bytes[i] ^ ks[i] for i in range(len(data_bytes))])

def main():

nss = build_nss_array()

print("nss_array (hex):", nss.hex())

题目中 Len_k2 为 crypt 的长度，但 init 有 bug，实际不影响 s（仍然用 len 做参数

以匹配签名）

这里我们随便放一个非零长度，例如 len("B2a0s2e40815") = 12 来调用 init 的接口

（与实际结果无关）

len_k2 = len("B2a0s2e40815")

生成 keystream（长度 40）

s_init = init_s_with_bug(len_k2)

keystream = rc4_prga_bytes(s_init, 40)

题目要求经过 c4(Data,Len_D,crypt,k_len) 之后 Data == nss_array

即 原始 BUU ^ keystream = nss_array -> 原始 BUU = nss_array ^ keystream

BUU = bytes([nss[i] ^ keystream[i] for i in range(40)])

try:

flag_str = BUU.decode('utf-8')

except UnicodeDecodeError:

若不是有效 UTF-8，强制以 latin-1 显示字节（不过通常是可读 ASCII）

flag_str = BUU.decode('latin-1')

print("Recovered BUU (raw bytes):", BUU)

print("Recovered BUU (as string):")

print(flag_str)

验证：对 BUU 再运行一次 c4 应得到 nss_array

verified = c4_xor(BUU, len_k2)

print("Verification equals nss_array:", verified == nss)

if verified == nss:

print("Verified OK.")

else:

print("Verification failed! (unexpected)")

if __name__ == "__main__":

main()

BaseCTF{Rc4_1$_@_G0od_3nCrypt!on_MethOd}

七,UPX PROMAX
1,有壳,且无法正常脱

2,101中查看标志位,发现都被改了,于是用x64dbg进行分析

3,f9运行后观察到是esp定律

4,打开rsp的内存布局,设置断定然后再调试,即可发现第一部分解压完成了,变成了pop形式

5,通过f8我们可以依靠jmp跳到正确有效的函数入口,此时就可以使用scylla脱壳了

6,点击Dump，然后保存好文件，再点击IAT Autosearch,

7,看到IAT已找到，再点击Get Imports，

8,点击Fix Dump,选择刚才Dump下来的文件就可以了,现在就可以ida分析了,

9,这里就很简单了,前面去壳是真几把麻烦,这里扔给gpt再让他进行异或运算就可以,脚本如下

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <stdbool.h>

#include <windows.h>

#include <winternl.h>

int main() {

int enc[] = {0x22, 0x11, 0x17, 0x21, 0x16, 0x11, 0x3C, 0x23, 0x65, 0x5C,

0x2E, 0x74, 0x7C, 0x7D, 0x6D, 0x72, 0x6C, 0x0E, 0x36, 0x34,

0x64, 0x42, 0x57, 0x4E, 0x3B, 0x24, 0x36, 0x3A, 0x2C, 0x6D,

0x43, 0x13, 0x7A, 0x68, 0x11, 0x3D, 0x24, 0x10, 0x2E, 0x52,

0x5D, 0x29};

for (int i = 41; i > 0; i--) {

enc[i - 1] = enc[i - 1] ^ enc[i];

}

for (int j = 0; j < 42; j++) {

printf("%c", enc[j] ^ j ^ '}');

}

return 0;

}

10,(hy告诉我了个简单方法,不用断点调试,f9运行到cmd卡住,此时直接dump就出来了)

