
攻防世界### Reversing-x64Elf-100

下载附件后先用ida打开,查看了strings部分,发现该文件需要在linux中打开,
之后查看main函数的c语言伪代码,并且main中显示了返回1时为错误,返回1时才正确,并且根据代
码中显示调用了sub_4006FD,

int64 fastcall main(int a1, char a2, char a3)
{
char s[264]; // [rsp+0h] [rbp-110h] BYREF
unsigned __int64 v5; // [rsp+108h] [rbp-8h]

v5 = __readfsqword(0x28u);
printf("Enter the password: ");
if (!fgets(s, 255, stdin))
return 0;
if ((unsigned int)sub_4006FD(s))
{
puts("Incorrect password!");
return 1;
}
else
{
puts("Nice!");
return 0;
}
}

查看这个函数的代码后发现if的判断语句为(char)(v3[n11 % 3] + 2 (n11 / 3)) - (char *)(n11 + p_s)
!= 1

int64 fastcall sub_4006FD(__int64 p_s)
{
int n11; // [rsp+14h] [rbp-24h]
_QWORD v3[4]; // [rsp+18h] [rbp-20h]

v3[0] = "Dufhbmf";
v3[1] = "pG`imos";
v3[2] = "ewUglpt";
for (n11 = 0; n11 <= 11; ++n11)
{
if ((char)(v3[n11 % 3] + 2 (n11 / 3)) - (char *)(n11 + p_s) != 1)

return 1;
}
return 0;
}

由此可得知需要该判断语句在12次循环中都要等于1才能返回0得出正确flag,由于我自身还不会写
脚本,并且对于该判断语句中的二级指针也不太熟练,于是结合ai得出了脚本,运行后得出了正确密
码

def generate_password():
"""
This function replicates the password validation logic from the reverse-engineered C code to
generate the correct password. """ # These are the hardcoded strings from the binary
v3 = [
"Dufhbmf",
"pG`imos",
"ewUglpt"
]

--- Main execution ---
if name == "main":
correct_password = generate_password()

password = []

The loop runs 12 times, for n11 from 0 to 11

for n11 in range(12):

This part calculates the index to get the source character,

exactly matching the C code logic: # *(v3[n11 % 3] + 2 * (n11 /

3)) string_index = n11 % 3

char_index = 2 * (n11 // 3) # Use integer division

source_char = v3[string_index][char_index]

The condition for a correct password character is:

ASCII(source_char) - ASCII(input_char) == 1 # Therefore, the

correct input character's ASCII value is source_char's ASCII - 1

correct_char_code = ord(source_char) - 1

password.append(chr(correct_char_code))

return "".join(password)

print(f"[*] The script has derived the password.")
print(f"[*] Correct password is: {correct_password}")

得出密码为Code_Talkers并且在linux中运行也正确

由此可得flag为改密码本身.

NEWSTAR

1,
multi-headach3

根据网页显示的提示先打开robots.txt,之后根据显示打开index.php,最后通过 curl -v 来查看重
定向过程中的详细响应头,得到了flag

2,
strange_login
打开网页后发现需要输入账号和密码,尝试sql注入,admin'#为账号,密码随意;
得出了flag,拼凑语句大致为SELECT * FROM users WHERE username = 'admin'#' AND
password = '123'

3,
宇宙的中心是php
打开网页后是一个黑洞的效果,并且我点击右键和f12没有效果,于是怀疑网页源代码里有线索,于是
用 curl 命令绕过了限制,查看html的源代码,在注释中发现了线索/s3kret.php;于是打开这个新网
页;

分析if的判断语句,根据intval函数的特性,十进制47转化为八进制57;于是得出curl指令curl -d
"newstar2025=057" http://47.94.239.26:34820/s3kret.php; 运行后得出flag

4,
别笑,你也过不了第二关
哪吒接魔丸,第二关要求一万分,这个直接在控制台修改分数就行score = 1000000;
然后得出flag

http://47.94.239.26:34820/s3kret.php

basectf(逆向)
1,#### You are good at IDA

挨个在ida里找就行,拼起来即可

2,#### UPX mini
这个先用die查看,发现有壳,于是使用urx将其去壳,去壳后用ida发现main中存在base64编码,解码
后得出flag(这个题学会了urx的用法和逆向题都先用die查看一下的技巧)

3,#### BasePlus
ida打开发现一串乱码类似base64,查看encode函数,发现base64解码的伪代码,但是每个字符在解
码前都进行了异或处理,所以先异或每个字母再进行base64解码

4,#### ez_maze
首先用die查看发现无壳,直接ida逆向分析,发现这大致是一个15*15的用wasd控制的迷宫游戏,要
求最短路径才能游戏胜利

shift+12后看到了矩阵,之后再用shift+f5提取这个矩阵,用脚本得出了最短到达目的的路径

maze = [

8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,

0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,

0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,

0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,

0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9

]

visited = [0] * (15 * 15) # 记录访问过的点

def BFS(maze, x, y):

queue = [(x, y, '')] # 设置队列，bfs用队列，dfs用栈

while queue:

x, y, path = queue.pop(0)

if x < 15 and y < 15 and x >= 0 and y >= 0 and visited[x * 15 + y] !=

1 and maze[x * 15 + y] != 1:

visited[x * 15 + y] = 1 # 证明已经访问过了

queue.append((x + 1, y, path + 's')) # 只能字符串相加

queue.append((x, y - 1, path + 'a'))

queue.append((x, y + 1, path + 'd'))

queue.append((x - 1, y, path + 'w'))

else:

continue

if maze[x * 15 + y] == 9:

return path

flag = BFS(maze, 0, 0)

print(flag)

得出一串字符类似于md5的编码,尝试md5解码得出了flag

